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Chapter 1. Probability and Distributions

1.1 Definitions

There are three main methods on defining probability.

Definition 1.1.1 In everyday life, probability is the measure of a person’s belief in
the occurrence of a future event.

This is an acceptable practical interpretation, but for statistics, we seek a better definition for a
clearer understanding of how it can me measured and assists us in making inferences.

Definition 1.1.2 Probability is the relative frequency of an event happening, which
is defined as the fraction of times an event occurs if it’s repeated over and over
infinitely.

The last method, which we will be focusing on for this course, is defined using axioms of proba-
bility.

1.2 Review of Set Theory

Definition 1.2.1

• We use capital letters to denote sets of objects: 𝐴, 𝐵, etc.
• 𝑆 denotes the universal set which is the set of all possible objects.
• 𝜙 denotes the empty set.

Proposition 1.2.2 For any two sets 𝐴 and 𝐵,

• 𝐴 is a subset of 𝐵 is denoted 𝐴 ⊆ 𝐵.
• The union of 𝐴 and 𝐵 is denoted 𝐴 ∪ 𝐵, and the union of many sets can be

written as:

𝐴1 ∪𝐴2 ∪ · · · =
∞⋃
𝑖=1

𝐴𝑖

• The intersection of sets 𝐴 and 𝐵 is denoted 𝐴∩ 𝐵.
• If 𝐴 ⊆ 𝑆, then 𝐴𝑐 = {𝑥 ∈ 𝑆 : 𝑥 ∉ 𝐴}.
• Two sets 𝐴 and 𝐵 are said to be disjoint or mutually exclusive if 𝐴∩ 𝐵 = 𝜙.
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1.3. The Probability Set Function

Theorem 1.2.3

• Distributive Laws:

𝐴∩ (𝐵 ∪ 𝐶) = (𝐴∩ 𝐵) ∪ (𝐴∩ 𝐶)

𝐴∪ (𝐵 ∪ 𝐶) = (𝐴∪ 𝐵) ∩ (𝐴∪ 𝐶)

• De Morgan’s Laws:
(𝐴∩ 𝐵)𝑐 = 𝐴𝑐 ∪ 𝐵𝑐

(𝐴∪ 𝐵)𝑐 = 𝐴𝑐 ∩ 𝐵𝑐 .

• Distributive Law:
𝐴∪ (𝐵 ∪ 𝐶) = (𝐴∪ 𝐵) ∪ 𝐶.

𝐴∩ (𝐵 ∩ 𝐶) = (𝐴∩ 𝐵) ∩ 𝐶.

For non-decreasing or non-increasing sets, we have:

Theorem 1.2.4 A sequence of events {𝐶𝑛} is an increasing(resp. decreasing)
sequence if

𝐶𝑛 ⊂ 𝐶𝑛+1 resp. (𝐶𝑛+1 ⊂ 𝐶𝑛)

for all 𝑛, in which we write

lim
𝑛→∞

𝐶𝑛 =

∞⋃
𝑛=1

𝐶𝑛 resp. ( lim
𝑛→∞

𝐶𝑛 =

∞⋂
𝑛=1

𝐶𝑛)

A analogous definition for nonincreasing and nondecreasing arises where we replace
the strict subset symbol with non-strict subset symbol ⊆.

1.3 The Probability Set Function

A random experiment is a process of observation which leads to a random outcome, the set of all
possible outcomes are called the sample space, and each point in this set is a sample point. For now
we will simply focus on experiments whose sample space is finite or countably infinite.

Definition 1.3.1 A discrete sample space is one that contains countable number
of distinct sample points.

Typically, events are just possible outcomes of an experiment, but for experiments with discrete
sample spaces, we can utilize certain concepts from set theory.

3



Chapter 1. Probability and Distributions

Definition 1.3.2 An event in a discrete sample 𝑆 is a collection of sample points,
i.e. any subset of 𝑆.

• A simple event is an event that cannot be decomposed, i.e. the event corre-
sponds to one and only one possible sample point.

• A compound event consists of two or more simple events.

Example 1.3.3 In the six-sided dice tossing experiment,

𝑆 = {𝐸1,𝐸2,𝐸3,𝐸4,𝐸5,𝐸6},

where each simple event 𝐸𝑖 represents "observe number" 𝑖, notice each simple event
corresponds to a sample point.The events "observe a 1", "observe a 3", "observe a 5",
are all simple events while an event like "observe an odd outcome" is a compound
event since it is composed of three simple events 𝐸1,𝐸2,𝐸3.

On analyzing the relative frequency of events, we notice that three conditions must hold, these
properties are so important we call them the probability axioms.

Definition 1.3.4 [Probability Axioms]
Suppose 𝑆 is a sample space. To every event 𝐴 in 𝑆, we assign a number 𝑃(𝐴),
called the probability of 𝐴, so that the following axioms hold:

• 𝑃(𝐴) ≥ 0
• 𝑃(𝑆) = 1
• If 𝐴1,𝐴2,𝐴3, ... are a sequence of pairwise mutually exclusive events in 𝑆, then

𝑃(𝐴1 ∪𝐴2 ∪ ...) = 𝑃(𝐴1) + 𝑃(𝐴2) + · · ·

1.4 Combinatorial tools

Theorem 1.4.1 [Multiplication rule/mn rule]
If we have two sets with 𝑚 elements in one set and 𝑛 elements in the other, then it
is possible to form 𝑚 × 𝑛 pairs containing one item from each set.

Remark 1.4.2 The multiplication rule can be extended to any number of sets. That
is, given 𝑛 sets each with 𝑘1, ..., 𝑘𝑛 elements, the number of unique combinations
where we pick one element from each set is 𝑘1 · · · 𝑘𝑛 .
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1.4. Combinatorial tools

In some instances, it is useful to know the number of distinct ways that a set of elements can be
arranged in sequences, this brings us to another useful combinatorial result.

Theorem 1.4.3 [Permutation and Combinations]
Suppose we have 𝑛 distinct objects. An ordered arrangement of these objects are
called permutations. The number of permutations for 𝑟 items is

𝑃𝑛
𝑟 =

𝑛!
(𝑛 − 𝑟)!

The number of unordered subsets of 𝑟 objects out of 𝑛 is called the number of
combinations, it can be found using

𝐶𝑛
𝑟 =

(
𝑛

𝑟

)
=

𝑃𝑛
𝑟

𝑟!
=

𝑛!
𝑟!(𝑛 − 𝑟)!

The next result can be used to determine the number of subsets of various sizes that can be formed
by partitioning a set into non-overlapping groups.

Theorem 1.4.4 [Combinatorics: Extension]
To find the number of ways of partitioning 𝑛 distinct objects into 𝑘 distinct groups
containing 𝑛1, 𝑛2, ..., 𝑛𝑘 objects, respectively, where each object appears in exactly
one group and

∑𝑘
𝑖=1 𝑛𝑖 = 𝑛, is (

𝑛

𝑛1, ..., 𝑛𝑘

)
=

𝑛!
𝑛1!...𝑛𝑘 !

Theorem 1.4.5 [Continuity Theorem of Probability]
Let {𝐶𝑛} be a increasing sequence of events. Then

lim
𝑛→∞

𝑃(𝐶𝑛) = 𝑃( lim
𝑛→∞

𝐶𝑛) = 𝑃

( ∞⋃
𝑛=1

𝐶𝑛

)
Let {𝐶𝑛} be a decreasing sequence of events. Then

lim
𝑛→∞

𝑃(𝐶𝑛) = 𝑃( lim
𝑛→∞

𝐶𝑛) = 𝑃

( ∞⋂
𝑛=1

𝐶𝑛

)
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Chapter 1. Probability and Distributions

1.5 Conditional Probability and Independence

The concept of conditional probability comes from the probability of an event happening based on
our knowledge of other events which have occurred.

Example 1.5.1 Suppose we toss a fair dice, the unconditional probability of it
landing on a 3 is 1/6, but if we know that an odd number has fallen,t hen the
conditional probability of landing on a 3 becomes 1/3.

Definition 1.5.2 The conditional probability of an event 𝐴, given that an event 𝐵 has
occurred, is equal to

𝑃(𝐴|𝐵) = 𝑃(𝐴∩ 𝐵)
𝑃(𝐵) ,

provided 𝑃(𝐵) > 0.

Now suppose that the probability of the occurrence of an event 𝐴 is unaffected by whether another
event 𝐵 has occurred, when this happens, we say that the two events 𝐴 and 𝐵 are independent.

Definition 1.5.3 Two events 𝐴 and 𝐵 are independent if any one of the following
holds:

• 𝑃(𝐴|𝐵) = 𝑃(𝐴),
• 𝑃(𝐵|𝐴) = 𝑃(𝐵),
• 𝑃(𝐴∩ 𝐵) = 𝑃(𝐴)𝑃(𝐵).

Otherwise, the events are dependent.

Example 1.5.4 Consider the following events for a single toss of a fair dice:

• 𝐴 = Observe an odd number,
• 𝐵 = Observe an even number,
• 𝐶 = Observe a 1 or a 2.

Are 𝐴 and 𝐵 independent? No, because

𝑃(𝐴∩ 𝐵) = 0 while 𝑃(𝐴)𝑃(𝐵) = 1
4

Are 𝐴 and 𝐶 independent? Yes, as

𝑃(𝐴∩ 𝐶) = 1
6 and 𝑃(𝐴)𝑃(𝐵) = 1

6
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1.6. Twos Laws of Probability

1.6 Twos Laws of Probability

The first two laws gives the probabilities of unions and intersections of events.

Theorem 1.6.1 [Additive Law of Probability]
The probability of the union of two events 𝐴 and 𝐵 is

𝑃(𝐴∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴∩ 𝐵)

If 𝐴 and 𝐵 are mutually exclusive, then

𝑃(𝐴∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵)

Corollary 1.6.2 For an event 𝐴,

𝑃(𝐴) = 1− 𝑃(𝐴𝑐)

Proof. Since 𝐴 ⊆ 𝑆, then 𝐴𝑐 ⊆ 𝑆 and 𝐴∪𝐴𝑐 = 𝑆. Then by second probability axiom we have

𝑃(𝐴∪𝐴𝑐) = 1

by properties of complement we know 𝐴 and 𝐴𝑐 are mutually exclusive, hence

𝑃(𝐴∪𝐴𝑐) = 𝑃(𝐴) + 𝑃(𝐴𝑐) =⇒ 𝑃(𝐴) = 1− 𝑃(𝐴𝑐).

Notice that the additive law can be extended to 𝑘 events by repeatedly applying the above theorem.

Theorem 1.6.3 [Inclusion-Exclusion Formula]
The probability of the union of 𝑘 events, 𝐴1, ...,𝐴𝑘 is

𝑃

(
𝑘⋃

𝑖=1
𝐴𝑖

)
=

𝑘∑
𝑖=1

𝑃(𝐴𝑖) −
∑
𝑖< 𝑗

𝑃(𝐴𝑖 ∩𝐴 𝑗) + · · · + (−1)𝑘−1𝑃(𝐴1 ∩ · · · ∩𝐴𝑘)

Intuitively, we subtract the overlaps but have to add back things in the union which
we’ve subtracted twice.

The multiplicative law of probability gives the probability of the intersection of two events.
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Chapter 1. Probability and Distributions

Theorem 1.6.4 [The Multiplicative Law of Probability]
The probability of the intersection of two events 𝐴 and 𝐵 is

𝑃(𝐴∩ 𝐵) = 𝑃(𝐴)𝑃(𝐵|𝐴) = 𝑃(𝐵)𝑃(𝐴|𝐵).

If 𝐴 and 𝐵 are independent, then

𝑃(𝐴∩ 𝐵) = 𝑃(𝐴)𝑃(𝐵).

Similarly, the multiplicative law can be extended the find the probability of the intersection of any
number of events. By twice applying the theorem,

𝑃(𝐴∩ 𝐵 ∩ 𝐶) = 𝑃[(𝐴∩ 𝐵) ∩ 𝐶] = 𝑃(𝐴∩ 𝐵)𝑃(𝐶 |𝐴∩ 𝐵) = 𝑃(𝐴)𝑃(𝐵|𝐴)𝑃(𝐶 |𝐴∩ 𝐵).

And for 𝑘 events, we apply it 𝑘 times and see that

𝑃(𝐴1 ∩𝐴2 ∩ · · · ∩𝐴𝑘) = 𝑃(𝐴1)𝑃(𝐴2 |𝐴1) · · · 𝑃(𝐴𝑘 |𝐴1 ∩ · · · ∩𝐴𝑘−1).

1.7 Bayes’ Rule

Often times, it is useful to view a sample space as the union of mutually exclusive subsets, this
brings us to the definition of a partition.

Definition 1.7.1 For some positive integer 𝑘, let the sets 𝐵1, 𝐵2, ..., 𝐵𝑘 be such that

𝑆 = 𝐵1 ∪ · · · ∪ 𝐵𝑘 and 𝐵𝑖 ∩ 𝐵 𝑗 = ∅, for 𝑖 ≠ 𝑗.

Then the collection of sets {𝐵1, ..., 𝐵𝑘} is a partition of 𝑆.

Now, given any subset 𝐴 of 𝑆, if {𝐵1, ..., 𝐵𝑘} is a partition of 𝑆, then 𝐴 can be decomposed into

𝐴 = (𝐴∩ 𝐵1) ∪ · · · ∪ (𝐴∩ 𝐵𝑘)

Figure below illustrates this decomposition for 𝑘 = 3.

This leads us to the law of total probability.
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1.8. Random Variables

Theorem 1.7.2 Assume that {𝐵1, .., 𝐵𝑘} is a partition of 𝑆 such that 𝑃(𝐵𝑖) > 0 for
𝑖 = 1, ..., 𝑘. Then for any event 𝐴

𝑃(𝐴) =
𝑘∑

𝑖=1
𝑃(𝐴|𝐵𝑖)𝑃(𝐵𝑖).

Proof. Since 𝐴 can be written as 𝐴 = (𝐴 ∩ 𝐵1) ∪ · · · ∪ (𝐴 ∩ 𝐵𝑘) and each bracket is disjoint with all
other,

𝑃(𝐴) = 𝑃(𝐴∩ 𝐵1) + · · · + 𝑃(𝐴∩ 𝐵𝑘)
= 𝑃(𝐴|𝐵1)𝑃(𝐵1) + · · · + 𝑃(𝐴|𝐵𝑘)𝑃(𝐵𝑘)

=

𝑘∑
𝑖=1

𝑃(𝐴|𝐵𝑖)𝑃(𝐵𝑖)

Using this result, we can derive a famous result known as Bayes’ Theorem

Theorem 1.7.3 [Bayes’ Theorem]
Assume that {𝐵1, ..., 𝐵𝑘} is a partition of 𝑆 such that 𝑃(𝐵𝑖) > 0 for 𝑖 = 1, ..., 𝑘. Then

𝑃(𝐵 𝑗 |𝐴) =
𝑃(𝐴|𝐵 𝑗)𝑃(𝐵 𝑗)∑𝑘
𝑖=1 𝑃(𝐴|𝐵𝑖)𝑃(𝐵𝑖)

Intuitively, Bayes’ Theorem is used when we know the probability of each 𝐵𝑖 of a partition
{𝐵1, ..., 𝐵𝑘}, and subsequently observe the conditional probability of some other event 𝐴 hap-
pening given each of 𝐵1,𝐵2,..., or 𝐵𝑘 . From this, we can use Bayes’ to calculate any one of the invert
conditional probabilities 𝑃(𝐵 𝑗 |𝐴) for some 𝑗.

1.8 Random Variables

Definition 1.8.1 For a random experiment with sample space 𝑆, a random variable
is a real-valued function with domain 𝑆.

Remark 1.8.2 A random variable is simply the process of assigning a numerical
value to each outcome of an experiment for ease of making calculations and infer-
ences. They are called random variables become their input is the outcome of a
random experiment.

There are two types of random variables which we will be focusing on: discrete and continuous.
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Chapter 1. Probability and Distributions

1.9 Discrete Random Variables

Definition 1.9.1 A random variable is said to be discrete if it can assume only a
finite or countably infinite number of distinct values.

Notationally, we will use capital letters, such as 𝑋,𝑌,𝑍 to denote a random variable, and lowercase
letters like 𝑥, 𝑦, 𝑧 to denote a particular value that a random variable may assume. Furthermore, the
expression (𝑋 = 𝑥) can be understood as the set of app points in 𝑆 that is assigned the value 𝑥 by the
random variable 𝑋. With this in mind, the notation 𝑃(𝑋 = 𝑥) now makes sense.

Definition 1.9.2 The probability of 𝑋 taking on the value 𝑥, denoted 𝑃(𝑋 = 𝑥), is
defined as the sum of probabilities of all sample points in 𝑆 that are assigned to the
value 𝑦. Someone we will write 𝑝𝑋(𝑥) instead of 𝑃(𝑋 = 𝑥).

Because 𝑝(𝑥) is a function which assigns probabilities to each value 𝑥 of the random variable 𝑋, it
is usually called the probability function of 𝑋.

Definition 1.9.3 The probability distribution of a discrete random variable 𝑋 can be
represented by a formula, a table, or a graph that provides 𝑝(𝑥) = 𝑃(𝑋 = 𝑥) for all
𝑥.

Remark 1.9.4 Notice that 𝑃(𝑋 = 𝑥) ≥ 0 for all 𝑥, but the probability distribution
only assigns nonzero probabilities to only a countable number of distinct 𝑥 values.
And any value 𝑥 that is not explicitly assigned a positive probability is assumed to
have 𝑃(𝑋 = 𝑥) = 0.

For any discrete random variables, the probability distribution is called the probability mass function
(pmf) and is denote 𝑝𝑋(𝑥), when there is no ambiguity, we may remove the subscript and just write
𝑝(𝑥).

Theorem 1.9.5 For any discrete probability distribution, the following must be true:

• 0 ≤ 𝑝(𝑥) ≤ 1 for all 𝑥.
•

∑
𝑥 𝑝(𝑥) = 1 , where the summation is over all values of 𝑦 with nonzero

probability.
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1.10. Cumulative Distribution Function

1.10 Cumulative Distribution Function

Definition 1.10.1 Let 𝑋 denote any random variable. The cumulative distribution
function (cdf) of 𝑋, denoted by 𝐹𝑋(𝑥), is defined by

𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥), for −∞ < 𝑥 < ∞.

The subscript 𝑋 can be removed if no ambiguity involved.

Proposition 1.10.2 If 𝐹(𝑥) is a cdf, then

• 𝐹(−∞) = lim
𝑥→−∞

𝑃(𝑋 ≤ 𝑥) = lim
𝑥→−∞

𝐹(𝑥) = 0.

• 𝐹(∞) = lim
𝑥→∞

𝑃(𝑋 ≤ 𝑥) = lim
𝑥→∞

𝐹(𝑥) = 1.

• 𝐹(𝑥) is a right-continuous non-decreasing function of 𝑥.

Remark 1.10.3 The definition for a cdf is the same for both discrete and continuous
random variables. However, the cdf for a discrete random variable is a step function,
while the cdf of a continuous random variable is a continuous non-decreasing line

1.11 Discrete Transformations

Suppose we have some discrete random variable 𝑋 with known distribution, and we are interested
in a random variable 𝑌 which is some transformation of 𝑋, say, 𝑌 = 𝑔(𝑋). How do we determine
the distribution of 𝑌? Assume 𝑋 has suppose 𝑆𝑋 , then 𝑌 has support 𝑆𝑌 = {𝑔(𝑥) : 𝑥 ∈ 𝑆𝑋}. If 𝑔 is
bĳective, then the pmf of 𝑌 can be obtained easily by

𝑝𝑌(𝑦) = 𝑃(𝑌 = 𝑦) = 𝑃[𝑔(𝑋) = 𝑦] = 𝑃[𝑋 = 𝑔−1(𝑦)] = 𝑝𝑋(𝑔−1(𝑦)).

If 𝑔 is not bĳective, instead of developing an overall rule, we usually obtain the pmf of 𝑌 in a
straightforward manner by finding patterns or brute-forcing.

Example 1.11.1 Suppose 𝑋 have the pmf 𝑝𝑋(𝑥) = 1
3 for 𝑥 = −1, 0, 1 and zero

elsewhere, and we want to find the pmf of 𝑌 = 𝑋2. Note 𝑔(𝑥) = 𝑥2 is not a bĳective
function on the domain as 𝑔(−1) = 𝑔(1), we instead use the fact that 𝑆𝑌 = {0, 1}, so

𝑝𝑌(1) = 𝑃(𝑋 = 1) + 𝑃(𝑋 = −1) = 2
3 and 𝑝𝑌(0) = 𝑃(𝑋2 = 0) = 𝑃(𝑋 = 0) = 1

3

11



Chapter 1. Probability and Distributions

1.12 Continuous Random Variable

Continuous random variables can take on an uncountable infinite number of values, think of
people’s height.

Definition 1.12.1 A random variable 𝑋 is continuous if and only if its cdf 𝐹(𝑥) is
continuous for −∞ < 𝑥 < ∞.

Remark 1.12.2 If 𝑋 is a continuous random variable, then for any real number 𝑥,

𝑃(𝑋 = 𝑥) = 0.

If this were not true, then 𝑃(𝑋 = 𝑥0) = 𝑝0 > 0 and so 𝐹(𝑥) would have a jump
discontinuity of size 𝑝0 at 𝑥0 and so 𝐹(𝑥) would not be continuous. Intuitively,
we should not be bothered with measure the probability of a continuous random
variables at discrete point but rather on intervals.

The derivative of 𝐹(𝑥) is another important function.

Definition 1.12.3 Let 𝐹(𝑥) be the cdf of a continuous random variable 𝑋. Then
𝑓 (𝑥), given by 𝑓 (𝑥) =

𝑑𝐹(𝑥)
𝑑𝑥

= 𝐹′(𝑥) wherever the derivative exists, is called the
probability density function (pdf) for the random variable 𝑋.

Corollary 1.12.4 From the above definition, we see that

𝐹(𝑥) =
∫ 𝑥

−∞
𝑓 (𝑡)𝑑𝑡

Because of the properties that the cdf 𝐹(𝑥) holds, we can deduce two properties for the pdf 𝑓 (𝑦)
which is similar to theorem 1.9.5 in the discrete case.

Theorem 1.12.5 For any continuous probability distribution, the following must be
true:

• 𝑓 (𝑥) ≥ 0 for all 𝑥, −∞ < 𝑦 < ∞,
•

∫ ∞
−∞ 𝑓 (𝑥)𝑑𝑥 = 1.

To calculate probabilities of a continuous random variable between a interval 𝑃(𝑎 < 𝑋 ≤ 𝑏), notice
that

𝑃(𝑎 < 𝑋 ≤ 𝑏) = 𝑃(𝑋 ≤ 𝑏) − 𝑃(𝑋 ≤ 𝑎) = 𝐹(𝑏) − 𝐹(𝑎) =
∫ 𝑏

𝑎

𝑓 (𝑥)𝑑𝑥,

12
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and since 𝑃(𝑋 = 𝑎) = 𝑃(𝑋 = 𝑏) = 0, we indeed have 𝑃(𝑎 ≤ 𝑋 ≤ 𝐵) = 𝑃(𝑎 < 𝑋 < 𝑏).

Theorem 1.12.6 If a random variable 𝑋 has pdf 𝑓 (𝑥) and 𝑎 < 𝑏, then the probability
that 𝑋 falls in the interval [𝑎, 𝑏] is

𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) =
∫ 𝑏

𝑎

𝑓 (𝑥)𝑑𝑥.

1.13 Quantiles and percentiles

Definition 1.13.1 Let 𝑋 denote any random variable. If 0 < 𝑝 < 1, the 𝑝th quantile
of 𝑋, denoted by 𝜙𝑝 , is the smallest value such that 𝑃(𝑋 ≤ 𝜙𝑝) = 𝐹(𝜙𝑝) ≥ 𝑝. If 𝑋 is
continuous, then 𝜙𝑝 is the smallest value such that 𝐹(𝜙𝑝) = 𝑝. Some prefer to call
𝜙𝑝 is the 100𝑝th percentile of 𝑋.

The most important case is 𝜙0.5 which is the median or the second quantile of the random variable. We
also have 𝜙0.25 and 𝜙0.75 which can also called the first, and third quantile. Lastly, the difference
𝑖𝑞 = 𝑞3 − 𝑞1 is called the inter-quartile range of 𝑋 which measures the spread or dispersion of the
distribution of 𝑋.

1.14 Continuous Transformations

If 𝑋 is a continuous random variable with a known pdf 𝑓𝑋 , if 𝑔 is bĳective, then we can find the
pdf of a random variable 𝑌 = 𝑔(𝑋) by first obtaining its cdf.

Theorem 1.14.1 Let 𝑋 be a continuous random variable with pdf 𝑓𝑋(𝑥) and support
𝑆𝑋 . Let 𝑌 = 𝑔(𝑋), where 𝑔(𝑥) is a bĳective differentiable function on 𝑆𝑋 . Denote
the inverse of 𝑔 by 𝑥 = 𝑔−1(𝑦) and let 𝑑𝑥

𝑑𝑦
=

𝑑[𝑔−1(𝑦)]
𝑑𝑦

. Then the pdf of 𝑌 is given by

𝑓𝑌(𝑦) = 𝑓𝑋(𝑔−1(𝑦))| 𝑑𝑥
𝑑𝑦

|, for 𝑦 ∈ 𝑆𝑌

where the support of 𝑌 is 𝑆𝑌 = {𝑦 = 𝑔(𝑥) : 𝑥 ∈ 𝑆𝑋}.

Remark 1.14.2 We refer to 𝑑𝑥
𝑑𝑦

as the Jacobian of the transformation and the formula
is derived from change of variables.
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1.15 Expected values of Random Variable

Definition 1.15.1 Let 𝑋 be a random variable. If 𝑋 is discrete with pmf 𝑝(𝑥) and∑
𝑥 |𝑥 |𝑝(𝑥) < ∞, then the expectation of 𝑋 is

𝐸(𝑋) =
∑
𝑥

𝑥𝑝(𝑥)

If 𝑋 is continuous with pdf 𝑓 (𝑥) and
∫ ∞
−∞ |𝑥 | 𝑓 (𝑥) < ∞, then the expectation of 𝑋 is

𝐸(𝑋) =
∫ ∞

−∞
𝑥 𝑓 (𝑥)𝑑𝑥

Remark 1.15.2 The expectation 𝐸(𝑋) of a random variable is also called the expected
value or mean of 𝑋, and is usually denoted by 𝜇.

Theorem 1.15.3 [Expected Value of a Function of a Random Variable]
Let 𝑋 be a random variable, and let 𝑌 = 𝑔(𝑋) for some real-valued function 𝑔.
If 𝑋 is discrete with pmf 𝑝𝑋(𝑥) and support 𝑆𝑋 , moreover

∑
𝑥∈𝑆𝑋 |𝑔(𝑥)|𝑝𝑋(𝑥) < ∞,

then the expectation of 𝑌 exists and is given by

𝐸(𝑌) =
∑
𝑥∈𝑆𝑋

𝑔(𝑥)𝑝𝑋(𝑥).

If 𝑋 is continuous with pdf 𝑓𝑋(𝑥) and
∫ ∞
−∞ |𝑔(𝑥)| 𝑓𝑋(𝑥) < ∞, then the expectation of

𝑌 exists and is given by

𝐸(𝑌) =
∫ ∞

−∞
𝑔(𝑥) 𝑓𝑋(𝑥).

Theorem 1.15.4 [Expectation of a Constant] Let 𝑋 be any random variable and 𝑐

be a constant. then 𝐸(𝑐) = 𝑐.

Theorem 1.15.5 [Linearity of Expectations]
Let 𝑔1(𝑋) and 𝑔2(𝑋) be functions of a random variable 𝑋. If 𝐸(𝑔1(𝑋)) and 𝐸(𝑔2(𝑋))
exist. Then for any constants 𝑘, the expectation of 𝐸(𝑔1(𝑋) + 𝑘𝑔2(𝑋)) exists and is
given by

𝐸[𝑔1(𝑋) + 𝑘𝑔2(𝑋)] = 𝐸[𝑔1(𝑋)] + 𝑘𝐸[𝑔2(𝑋)].
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1.16 Special Expectations

Definition 1.16.1 For a random variable 𝑋 with expected value 𝜇, the variance of
𝑋 is defined as the expectation of (𝑋 − 𝜇)2. That is,

𝑉𝑎𝑟(𝑋) = 𝐸[(𝑋 − 𝜇)2] = 𝐸(𝑋2) − 𝜇2.

Variance is also commonly noted as 𝜎2.

Remark 1.16.2 The variances measured how "spread out" the values are of a
random variable around the mean.

Definition 1.16.3 [Standard Deviation]
The standard deviation of a random variable is the positive square root of the variance
and is denoted 𝜎, that is,

𝜎 =
√
𝑉𝑎𝑟(𝑋) =

√
𝜎2.

Variance is not a linear function, however we can develop a nice formula using linearity of expecta-
tions.

Theorem 1.16.4 Let 𝑋 be a random variable with finite mean 𝜇 and variance 𝜎2.
Then for all constants 𝑎 and 𝑏,

𝑉𝑎𝑟(𝑎𝑋 + 𝑏) = 𝑎2𝑣𝑎𝑟(𝑋).

1.17 Moment Generating Functions

Before introducing what a moment generating function is, we need to know what is a moment.
Parameters 𝜇 and 𝜎 are meaningful numerical measures associated with a random variable 𝑋.
However, they do not provide a uniquely identify the distribution of 𝑋. In this section, we will

discover a set of measures that does uniquely determine 𝑝(𝑦).

Definition 1.17.1 The 𝑘th moment of a random variable 𝑋 taken about the origin is
defined to be 𝐸(𝑌𝑘) and is denoted by 𝜇′

𝑘
.

In particular, notice that the first moment about about the origin, 𝐸(𝑌) is the expected value, and
the second moment 𝐸(𝑌2) is employed in finding 𝜎2.

15



Chapter 1. Probability and Distributions

Definition 1.17.2 the 𝑘th moment of a random variable 𝑋 taken about its mean, or the
𝑘th central moment of 𝑋, is defined to be 𝐸[(𝑋 − 𝜇)𝑘] and is denoted by 𝜇𝑘 .

Notice that 𝜎2 is the 2nd central moment.
The moments 𝜇′

𝑘
, opposed to mean and variance, can be used to show that two random variables

𝑋 and 𝑌 have identical probability distributions, under some fairly general conditions. So a major
use of moments is to approximate the probability distribution of a random variable.
With this, we can introduce the moment-generating function, which essentially, just packages all the
moments into a single

Definition 1.17.3 The moment-generating function 𝑚(𝑡) for a random variable 𝑋 is
defined to be 𝑚(𝑡) = 𝐸(𝑒 𝑡𝑋). The mgf of 𝑋 exists if there exists a positive constant
𝑏 such that 𝑚(𝑡) is finite for |𝑡 | ≤ 𝑏.

The moment-generating function possesses two important applications. First, if the mgf of a random
variable 𝑋 exist, then we can find any of the moment of 𝑋.

Theorem 1.17.4 If 𝑚(𝑡) exists, then for any positive integer 𝑘,

𝑑𝑘𝑚(𝑡)
𝑑𝑡𝑘

���
𝑡=0

= 𝑚(𝑘)(0) = 𝜇′
𝑘

In other words, if you find the 𝑘th derivative of 𝑚(𝑡) with respect to 𝑡 and set it to
0 then the result will be 𝐸(𝑋 𝑘).

Proof (Sketch). Expanding 𝑒 𝑡𝑥 by its Taylor polynomial, we have

𝑒 𝑡𝑥 = 1+ 𝑡𝑥 + (𝑡𝑥)2
2!

+ (𝑡𝑥)3
3!

+ (𝑡𝑥)4
4!

+ · · · .

and find then
𝑚(𝑡) = 𝐸(𝑒 𝑡𝑋) = 1+ 𝑡𝜇′

1 +
𝑡2

2!
𝜇′

2 +
𝑡3

3!
𝜇′

3 + · · · .

it follows that
𝑚(1)(𝑡) = 𝑡𝜇′

1 +
𝑡2

2!
𝜇′

2 +
𝑡3

3!
𝜇′

3 + · · · ,

𝑚(2)(𝑡) = 𝜇′
2 +

𝑡2

2!
𝜇′

3 +
𝑡3

3!
𝜇′

4 + · · · ,

and in general

𝑚(𝑘)(𝑡) = 𝜇′
𝑘 +

𝑡2

2!
𝜇′
𝑘+1 +

𝑡3

3!
𝜇′
𝑘+2 + · · · .

Now setting 𝑡 = 0 in each of the case we see that that 𝑚(𝑘)(0) = 𝜇′
𝑘
.
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1.18 Important inequalities

Theorem 1.18.1 [Markov Inequality]
Let 𝑢(𝑋) be a nonnegative function of the random variable 𝑋. If 𝐸[𝑢(𝑋)] exists,
then for every positive constant 𝑐,

𝑃(𝑢(𝑋) ≥ 𝑐) ≤ 𝐸[𝑢(𝑋)]
𝑐

.

Proof. We’ll prove this for continuous random variables, but the proof for the discrete is essentially
the same. Let 𝑓 (𝑥) be the pdf of 𝑋 and fix positive 𝑐, let 𝐴 = {𝑥 : 𝑢(𝑥) ≥ 𝑐}, we have

𝐸(𝑢(𝑋)) =
∫
𝐴

𝑢(𝑥) 𝑓 (𝑥)𝑑𝑥 +
∫
𝐴𝑐

𝑢(𝑥) 𝑓 (𝑥)𝑑𝑥

≥ 𝑐

∫ ∞

𝑐

𝑓 (𝑥)𝑑𝑥 + 0

= 𝑐𝑃(𝑢(𝑥) ≥ 𝑐)

Divide by 𝑐 on both side gives us the desired equation.

The preceding theorem is a generalization of an inequality which is called Chebyshev’s Inequality.

Theorem 1.18.2 [Chebyshev’s Inequality] Let 𝑋 be a random variable with mean
𝜇 and finite variance 𝜎2. Then, for any constant 𝑘 > 0,

𝑃(|𝑋 − 𝑢 | < 𝑘𝜎) ≥ 1− 1
𝑘2 or 𝑃(|𝑋 − 𝜇| ≥ 𝑘𝜎) ≤ 1

𝑘2 .

Proof. Using Markov Inequality, take 𝑢(𝑋) = (𝑋 − 𝜇)2 and 𝑐 = 𝑘2𝜎2. Then we have

𝑃[(𝑋 − 𝜇)2 ≥ 𝑘2𝜎2] ≤ 𝐸[(𝑋 − 𝜇)2]
𝑘2𝜎2 .

Since the numerator of the right-hand side is 𝜎2, it can be written as

𝑃(|𝑋 − 𝜇| ≥ 𝑘𝜎) ≤ 1
𝑘2 ,

which is the desired result. Naturally, we would take the positive number 𝑘 to be greater than 1 to
have an inequality of interest.

An alternative proof not using Markov Inequality is provided below.
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Proof. The proof for a continuous random variable will be given below, but the proof for the discrete
case will be very similar. Let 𝑓 (𝑥) be the pdf of 𝑋. Then

𝑉(𝑋) = 𝜎2 =

∫ ∞

−∞
(𝑥 − 𝜇)2 𝑓 (𝑥)𝑑𝑥

=

∫ 𝜇−𝑘𝜎

−∞
(𝑥 − 𝜇)2 𝑓 (𝑥)𝑑𝑥 +

∫ 𝜇+𝑘𝜎

𝜇−𝑘𝜎
(𝑥 − 𝜇)2 𝑓 (𝑥)𝑑𝑥 +

∫ ∞

𝜇+𝑘𝜎
(𝑥 − 𝜇)2 𝑓 (𝑥)𝑑𝑥.

The second integral is always greater than or equal to zero, moreover, (𝑥 −𝜇)2 ≥ 𝑘2𝜎2 for all values
of 𝑥 between the limits of integration for the first and third integral, as when 𝑥 = 𝜇± 𝑘𝜎,

[(𝜇− 𝑘𝜎) − 𝜇]2 = 𝑘2𝜎2 ≥ 𝑘2𝜎2.

Hence,

𝑉(𝑋) = 𝜎2 ≥
∫ 𝜇−𝑘𝜎

−∞
𝑘2𝜎2 𝑓 (𝑥)𝑑𝑥 +

∫ ∞

𝜇+𝑘𝜎
𝑘2𝜎2 𝑓 (𝑥)𝑑𝑥 = 𝑘2𝜎2

[ ∫ 𝜇−𝑘𝜎

−∞
𝑓 (𝑥)𝑑𝑥 +

∫ ∞

𝜇+𝑘𝜎
𝑓 (𝑥)𝑑𝑥

]
or

𝜎2 ≥ 𝑘2𝜎2[𝑃(𝑋 ≤ 𝜇− 𝑘𝜎) + 𝑃(𝑋 ≥ 𝜇+ 𝑘𝜎)] = 𝑘2𝜎2𝑃(|𝑋 − 𝜇| ≥ 𝑘𝜎).

Dividing by 𝑘2𝜎2, we get

𝑃(|𝑋 − 𝑢 | < 𝑘𝜎) ≥ 1− 1
𝑘2 or 𝑃(|𝑋 − 𝜇| ≥ 𝑘𝜎) ≤ 1

𝑘2 .

which are the desired equations.

Remark 1.18.3 This result applies for any probability distribution, whether it is
normal or not. However, the results of the theorem are very conservative, that is,
the bound could be quite far away from the actual probability.

Definition 1.18.4 [Convex]
A function 𝜙 defined on an interval (𝑎, 𝑏), −∞ ≤ 𝑎 < 𝑏 ≤ ∞, is convex if and only if
for all 𝑥, 𝑦 ∈ (𝑎, 𝑏) and for all 0 < 𝛾 < 1,

𝜙[𝛾𝑥 + (1− 𝛾)𝑦] ≤ 𝛾𝜙(𝑥) + (1− 𝛾)𝜙(𝑦).

If the inequality is strict, then 𝜙 is strictly convex.
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Theorem 1.18.5 If 𝜙 is convex on an open interval 𝐼 and 𝑋 is a random variable
such that 𝑆𝑋 ⊆ 𝐼 with finite expectation, then

𝜙[𝐸(𝑋)] ≤ 𝐸[𝜙(𝑋)]

If 𝜙 is strictly convex, then the inequality is strict unless 𝑋 is a constant random
variable.
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Chapter 2. Multivariate Distributions

2.1 Distributions of Two Random Variables

Definition 2.1.1 Give a random experiment with a sample space 𝑆, consider two
random variables 𝑋1 and 𝑋2
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