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1. Trace

Section 1. Trace

1.1. Notation: Let V,W be finite dimensional vector spaces over F , choose bases to identify
V ∼= Fn, W ∼= Fm, we obtain

L(V,W ) ∼= L(Fn, Fm) ∼= Mm×n(F ).

Here, Mm×n(F ) is the vector space of m × n-matrices with coefficients in F : matrices with m
rows and n columns. Such a matrix can be viewed as a linear map Fn → Fm, thus Mm×n(F ) =
L(Fn, Fm). Thus, we associate each T ∈ L(V,W ) to a matrix A with respect to the choice of
bases. A change of bases replaces A with

A′ = BAC−1

where B ∈ Mm×m(F ), C ∈ Mn×n(F ) are the change-of-basis matrices. However, we are mainly
interested in the case W = V , or linear operators. In this case, we can use the same basis for the
source V and target W = V . Thus T is associated with a square matrix A, and a change of basis
replaces A with

A′ = CAC−1.

1.2. Definition (Trace): The trace of a square matrix is defined as the sum of diagoal entries.

tr(A) =
n∑

i=1

Aii

1.3. Proposition: Let A,B be two square matrices, under matrix multiplication, (AB)ij =∑
k AikBkj, hence

tr(AB) =
n∑
i

n∑
k

AikBki =
n∑
k

n∑
i

AkiBik = tr(BA)

As a consequence, if C is invertible

tr(CAC−1) = tr(C−1(CA)) = tr(A)

This property enabled the following to be well-defined.

1.4. Definition: The trace of a transformation T ∈ L(V ) is defined as

tr(T ) = tr(A)

where A is the matrix of T with respect to some choice of basis of V
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2. Determinant

1.5. Remark:

• We also get tr(TS) = tr(ST ) for composition of transformations of V .

• if F = C, and λ1, ..., λn are the eigenvalus (with multiplicities) of T , then

tr(T ) = λ1 + · · ·+ λn

This follows since we may choose a basis in which the matrix A is upper triangular, with
λ1, ..., λn its diagonal entries.

Section 2. Determinant

The determiannt of T is also an ’invariant’ of a transformtion T . We will begin with some
motivation.

2.1. Motivation (The inverse of a 2× 2-matrix): For a 2× 2-matrix A ∈ M2×2(F ), given
as

A =

(
a b
c d

)
we define its determinant by the formula

det(A) = ad− bc

2.2. Lemma: The 2 × 2-matrix A is invertible if and only if det(A) ̸= 0. In this case, the
inverse is given by

A−1 =
1

det(A)

(
d −b
−c a

)
.

Proof. Let

B =

(
d −b
−c a

)
.

Multiplying A and B, we get

AB = det(A) · I

where I is the identity matrix. If det(A) ̸= 0, this shows that det(A)−1B is a matrix inverse of
A. If det(A) = 0, the identity becomes AB = 0, so if A were invertible, then this would give
B = A−1(AB) = A0 = 0. Hence, all matrix entries d,−b,−c, a of B are zero which implies that
A = 0, a contradiction. So A cannot be invertible.
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2. Determinant

2.3. Example: Solve the system of equations

2x1 + 3x2 = 4

2x1 + x2 = 3

Solution:

(
2 3
2 1

)(
x1
x2

)
=

(
4
3

)
Invert the coefficient matrix, and apply to the column vector the right side:(

x1
x2

)
=

(
2 3
2 1

)−1(
4
3

)
=

1

−4

(
1 −3
−2 2

)(
4
3

)
= −1

4

(
−5
−2

)
=

(
5/4
1/2

)
so x1 =

5
4 , x2 =

1
2 .

2.4. Intuition: So what is the meaning of this expression det(A) = ad−bc? Consider temporarily
the case F = R. Let v1, v2 ∈ R2 be vectors v1, v2 and

vol(v1, v2) ∈ R

the signed area of the parallelogram spanned by the two vectors. The following facts are known
from high school geometry.

(P1) vol(av1, v2) = a vol(v1, v2) = vol(v1, av2) ,

(P2) vol(v1 + av2) = vol(v1, v2),

for all vectors v1, v2 and scalars a.

2.5. Definition (Bi-linear): A bi-linear map is a map that is linear in each of its variables,
that is, for a bi-linear map f(x, y),

f(x+ x′, y) = f(x, y) + f(x′, y)

f(x, y + y′) = f(x, y) + f(x, y′)

f(cx, y) = cf(x, y) = f(x, cy)

2.6. Lemma: The map vol : R2 × R2 → R is bi-linear.

Proof. Let us first note two special cases of P1,P2. Taking a = 0 in P1, we have

vol(0, v2) = 0 = vol(v1, 0)

and taking v1 = 0, v2 = v, a = 1 in P2 we see

vol(v, v) = 0, v ∈ R2

For linearity in the first argument we must show that

vol(v1 + v′1, v2) = vol(v1, v2) + vol(v′1, v2)
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2. Determinant

for all vectors v1, v
′
1, v2. If v2 = 0 then it is the fist special case, and if v1 is a multiple of v2 it

follows from P2. Thus we can assume that v1, v2 are linearly independent and is a basis. Write
v′1 = λv1 + µv2, and simplify

vol(v1 + v′1, v2) = vol((1 + λ)v1 + µv2, v2)

= vol((1 + λ)v1, v2)

= (1 + λ)vol(v1, v2)

= vol(v1, v2) + vol(λv1 + µv2, v2)

= vol(v1, v2) + vol(v′1, v2).

thus vol is linear in the first argument, similarly it is also linear in the second argument.

2.7. Remark:

• The same argument shows a more general statement: For any vector space V over a field F ,
a map f : V × V → V satisfies P1,P2 above if and only if it is bi-linear, with the property
f(v, v) = 0 for all v ∈ V

• If a bilinear map f : V × V → V satisfies f(v, v) = 0 for all v, then also

f(v1, v2) = −f(v2, v1)

for all v1, v2. This follows by expanding 0 = f(v1 + v2, v1 + v2) :

0 = f(v1 + v2, v1 + v2)

= f(v1, v1) + f(v2, v2) + f(v1, v2) + f(v2, v1)

= f(v1, v2) + f(v2, v1)

The converse is also true if 2 ̸= 0 in F , because f(v1, v2) + f(v2, v1) = 0 implies that
2f(v, v) = 0 (take v = v1 = v2).

We can now calculate the volume of a parallelogram, using these formal properties of vol
and the fact that the volume of a square is vol(e1, e2) = 1 for e1, e2 the standard basis of R2

2.8. Proposition: Let v1, v2 ∈ R2 be the column vectors of a 2× 2 matrix A. Then

vol(v1, v2) = det(A).

Proof. Write

v1 =

(
a
c

)
= ae1 + ce2, v2 =

(
b
d

)
= be1 + de2.

Using bilinearity to expand, we get

vol(v1, v2) = a vol(e1, v2) + e vol(e2, v2)

= ac vol(e1, e1) + ad vol(e1, e2) + cb vol(e2, e1) + cd vol(e2, e2)

= ad− bc

= det(A).
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2. Determinant

2.9. Note: Altought this interpretation as an area only works for F = R, we can generalized
the definition of vol to arbitrary F , althought we can now rename it as det.
Namely, we currently have a unique bilinear functional

det : F 2 × F 2 → F, (v1, v2) 7→ det(v1, v2)

such that det(v, v) = 0 for all v ∈ F2, and with det(e1, e2) = 1 for the standard basis. In fact, we
have showed that det(v1, v2) = det(A) = ad− bc.

2.10. Motivation (Generalization to higher dimensions): In Rn, we consider the signed
volume of the parallelpiped spanned by v1, ..., vn, denoted vol(v1, ..., vn). This functional is uniquely
determined by the properties:

vol(v1, ..., λv1, ..., vn) = λvol(v1, ..., vi, ..., vn),

vol(v1, ...., vi + λvj , ..., vn) = vol(v1, ..., vi, ..., vn), j ̸= i

vol(e1, ..., en) = 1

As above, the first two conditions ensure that vol is multi-linear and vanishes whenever two ar-
guments coincide, and the third condition serves as a normalization property. Generalizing to
arbitrary fields, we have

2.11. Theorem: There exists a unique multi-linear functional

det : Fn × · · · × Fn → F, (v1, ..., vn) 7→ det(v1, ..., vn).

with the property that det(v1, ..., vn) = 0 whenever vi = vj for some i ̸= j, and with

det(e1, ..., en) = 1

for the standard ordered basis e1, ..., en of Fn

Before proving this theorem, lets remember a few facts about permutations.

2.12. Definition: A permutation of a finite set X is an invertible map σ : X → X

2.13. Note: We will only consider permutations of the set X = {1, ..., n}. There are n! =
n(n− 1) · · · 1 different permutations, and we can write a permutation σ by listing the elemtns σ(i)
as

(σ(1), σ(2), ..., σ(n)).

For example, if n = 4, the permutation

σ(1) = 4, σ(2) = 3, σ(3) = 1, σ(4) = 2,

6



2. Determinant

is depicted as

(4, 3, 1, 2)

2.14. Definition: A permutation σ is called even if the ’number of pairs in the wrong order’

#{(σ(i), σ(j))|i < j, σ(i) > σ(j)}

is even, and we write sign(σ) = 1. A permutation σ is odd if it not even.

2.15. Example: For the permutation (4, 3, 1, 2). There are five pairs of indices in wrong order,

(4, 3), (4, 1), (4, 2), (3, 1), (3, 2).

Hence, sign(sigma) = −1.

2.16. Note: Most of the times computing the signs by listing all pairs in the wrong order is
too cumbersome. Fortunately, there are much simpler methods on finding the parity. First note
that whenever one modifies a given permutation by interchanging two adjacent elements, then the
sign of σ changes. More specifically, that pair changes from ’correct order’ to ’wrong order’ or vice
versa, whil preserving all other orderings.
By induction , we can conclude that for any permutation σ, we have that sign(σ) = (−1)N if one
can put the elements back into their original order by N transpositions of adjacent elements.

2.17. Lemma: If σ′ is obtained from σ by interchanging two elements(not necessarily adjacent),
then σ′, σ have opposite signs.

Proof. Since we know exchanging two adjacent element switches the parity, we can view swapping
two elements as making a series of adjacent swaps. Let a, b be the two elements we wish to switch.
Say a and b are seperated by k elements with a in th elower slot. We first move b below a which
means we need k + 1 adjacent swaps, then to move a up to b’s original position it will take k
adjacent swaps. The total number of adjacent swaps required is 2k + 1, an odd number, so the
parity for σ′ will indeed be different from σ.

Let’s now return to the proof of the main theorem.
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2. Determinant

Proof. We start with the uniqueness proof, assuming existence. Each vj ∈ Fn can be uniquely
expressed in terms of the basis as

v1 =
n∑

i1=1

Ai11ei1 , ..., vn =
n∑

in=1

Ainnein

By multi-linearity,

det(v1, ..., vn) = det(

n∑
i1=1

Ai1,1ei1 , ...,

n∑
in=1

Ain,nein)

=

n∑
i1=1

· · ·
n∑

in=1

det(Ai1,1ei1 , · · · , Ain,nein)

=

n∑
i1···in

Ai1,1 · · ·Ain,n det(ei1 , · · · , ein)

(The notation
∑

i1···in just means the sum of all possible choices of the indices i1, ..., in.)
By assumption, det(ei1 , ..., ein) = 0 whenever two of the indices coincide. So the only case giving a
non-zero determinant is when

i1 = σ(1), i2 = σ(2), ..., in = σ(n)

for some permutation σ. This gives

det(v1, ..., vn) =
∑
σ

Aσ(1),1 · · ·Aσ(n),n det(eσ(1), ..., eσ(n))

We can put eσ(1), ..., eσ(n) into the right order by a finite number of interchanges of indices, since
swapping any two arguments of det gives a minus sign,

det(eσ(1), ..., eσ(n)) = sign(σ)det(e1, ..., en) = sign(σ).

we thus obtain the formula

det(v1, ..., vn) =
∑
σ

sign(σ)Aσ(1),1 · · ·Aσ(n),n.

This shows that the determinant is uniquely determined by its properties.
Now to show existence, we use the formula above as the definition of a multi-linear funcitonal.
Clearly, det(e1, ..., en) = 1, because in this case, Aij = δij (Kronecker delta) and only the trivial
permutation σ = I contributes the 1. So we only have to show that det(v1, ..., vn) vanishes whenever
vr = vs for some r < s. In this case we have that Air = Ais for all i = 1, ..., n. For every permutation
σ, let σ′ be obtained by an additional permutation of the elements σ(r) and σ(s). Thus

σ′(r) = σ(s), σ′(s) = σ(r), σ′(j) = σ(j) for j ̸= r, s.

Since σ′ is obtained from σ by a single transposition, we have that

sign(σ′) = −sign(σ).

On the other hand, since Air = Ais we have

Aσ(r),rAσ(s),s = Aσ(r),sAσ(s),r = Aσ′(r),rAσ′(s),s

8



2. Determinant

and thus

Aσ(1),1 · · ·Aσ(n),n = Aσ′(1),1 · · ·Aσ′(s),s.

From this, we can conclude that in the sum over all permutations, the terms corresponding to σ, σ′

cancel out, and so det(v1, ..., vn) = 0 whenever vr = vs for r < s.

2.18. Definition: The determinant of a square matrix A ∈ Mn×n(F ) is defined as

det(A) = det(v1, ..., vn),

where v1, ..., vn are the columns of A.

Which gives us a formula:

2.19. Theorem: The determinant of an n× n-matrix is given by the formula

det(A) =
∑
σ

sign(σ)Aσ(1),1 · · ·Aσ(n),n.

2.20. Example: If n = 3 there are six permutations (123), (132), (231), (213), (312), (321), of
signs +,−,+,−,+,−, respectively. So we obtain

det(A) = A11A22A33 −A11A32A23 +A21A32A13 −A21A12A33 +A31A12A23 −A31A22A13

2.21. Remark: In general, the number of terms in the formula is the numbers of permutations
n!. This indicates that for large matrices, the formula is not efficient at all. But there are much
simpler ways of computing determinants which we will discuss below.

2.22. Theorem: If A ∈ Mn×n(F ) is upper triangular (or lower triangular), then det(A) is the
product over diagonal entries.

Proof. Upper triangular means that Aij = 0 whenever i > j. Hence, the permutations σ does not
contribute to the sum unless σ(1) ≤ 1, σ(2) ≤ 2, ... Which means σ(1) = 1, σ(2) = 2, and so on.
So σ is just the identity permutation σ = id. Thus

Det(A) = A11A22 · · ·Ann

2.23. Theorem: For every square matrix A ∈ Mn×n(F ), we have

det(A) = det(At)

Proof. Note that for any permutation σ : {1, ..., n}, we have the inverse permutation τ = σ−1 :
{1, ..., n}. If i < j is an ordered pair such that σ(i) > σ(j), then k = σ(j), l = σ(i) is a pair such
that k < l but τ(k) > τ(l). Hence sign(σ) = sign(τ). Furthermore,

Aσ(1),1 · · ·Aσ(n),n = A1,τ(1) · · ·An,τ(n)

9



2. Determinant

(on the left we arrange the factors by their column index, and on the right we arrange them by row
index). Hence

sign(σ)Aσ(1),1 · · ·Aσ(n),n = sign(τ)At
τ(1),1 · · ·A

t
τ(n),n

Hence the sum the of all permutation σ is the same as the sum of all permutation τ = σ−1, therefore
det(A) = det(At).

2.24. Theorem (Properties of determinant under row&column operations):
Let A ∈ Mn×n(F ).

(1). If A′ is obtained from A by interchanging two columns, then det(A′) = −det(A).

(2). If A′ is obtained from A by taking the c-th multiple of one column, then det(A′) = c det(A).

(3). If A′ is obtained from A by additing a scalar multiple of one column to another column, then
det(A′) = det(A).

Parallel statements hold for row operations.

Proof. By construction, the determinant from A 7→ det(A) is linear in the columns of A, and
vanishes whenever two columns coincide. This gives (2) and (3). As in the case for n = 2, the fact
that det(A) vanishes whenever the two of the columns columns are equal implies that it changes
sign under the exchange of the two columns, which gives (1). Since det(A) = det(At), we have the
analogous statement for the row operations as well.

2.25. Theorem: For any A ∈ Mn×n(F ),

det(A) ̸= 0 ⇐⇒ rank(A) = n

⇐⇒ the columns of A are linearly independent

⇐⇒ the rows of A are linearly independent

⇐⇒ A is invertible.

Proof. We only have to show the first equivalence as everything else has been proved in MAT240.
Since rows operations and column operators do not change the rank of a matrix and change the
determinant by a non-zero scalar. Using both row and column operations, any matrix can be
bought into row echelon form, but for such matrix, the determinant is non-zero if and only if all
diagonal entries are non-zero, which happens if and only if the rank is n.

2.26. Theorem: For A,B ∈ Mn×n(F ),

det(AB) = det(A) det(B)

In particular, det(A−1) = det(A)−1.

10



2. Determinant

Proof. If A is not invertible, then AB is also not invertible, and both sides are zero. Hence we may
assume that A is invertible, i.e. det(A) ̸= 0. The multi-linear functional

ϕ : Fn × · · · × Fn → F,

ϕ(w1, ..., wn) =
det(Aw1, ..., Awn)

det(A)
(1.1)

vanishes if any two of the wi coincide, and ϕ(e1, ..., en) = 1(since Ae1, ..., Aen are the columns of
A, so the enumerator of (1.5) is det(A) in that case). Hence, by the uniqueness of the determinant
function, ϕ(w1, ..., wn) = det(w1, ..., wn) for all wj ’s.
Now take wj = Bej , the columns of B. Then the left hand side of (1.5) is

ϕ(w1, ..., wn) = det(w1, ..., wn) = det(B),

while the enumerator on the right hand side is

det(Aw1, ..., Awn) = det(AB(e1), ..., AB(en)) = det(AB)

Hence, (1.5) becomes

det(B) =
det(AB)

det(A)
.

Multiply both side by det(A) and we get the required form.

2.27. Theorem: Suppose A ∈ Mn×n(F ) has ’block upper triangular diagonal form’

A =

(
A′ ∗
0 A′′

)
where A′ ∈ Mk×k(F ) and A′′ ∈ Ml×l(F ). Then

det(A) = det(A′) det(A′′)

2.28. Definition (Cofactor expansions): Using linearity in the columns (or rows), we can
expand and simplify our process of finding the determinant.

det(A) =

A11 det


1 A12 · · · A1n

0 A22 · · · A2n
...

...
...

0 An2 · · · Ann

+A21 det


0 A12 · · · A1n

1 A22 · · · A2n
...

...
...

0 An2 · · · Ann

+· · ·+An1 det


0 A12 · · · A1n

0 A22 · · · A2n
...

...
...

1 An2 · · · Ann


In the i-th determinant, we can use row operations to move th i-th row into the first position. This
involves i− 1 transpositions of rows, hence introduces a sign of (−1)i−1. The resulting matrix is of
block upper triangular form (

1 ∗
0 Ã[i1]

)

11



2. Determinant

where Ã[i1] is the matrix obtained from A by removing the i-th row and j-th column. We therefore
obtain

det(A) = A11 det(Ã
[11])−A21 det(Ã

[21]) +A31 det(Ã
[31]) + · · ·

One can also apply the same technique to other columns or rows. We may reduce to the case just
discussed by first moving the j-th column into 1st position by j − 1 transpositions. This gives an
extra sign (−1)j−1, hence the total sign is (−1)j−1(−1)i−1 = (−1)i+j

2.29. Theorem (Cofactor expansion): To expand across the j-th column, fix any j (or fix
any i for expanding across i-th row),

det(A) =
n∑

i=1

(−1)i+jAij det(Ã
[ij])

where Ã[ij] denotes the matrix obtained from A by removing the i-th row and j-th column.

2.30. Remark: The determinant det(Ã[ij]) is known as the (i, j) minor; the expression

Cij = (−1)i+j det(Ã[ij])

is called the (i, j) cofactor. In practice, it is often a matter of finding a convinient row of column
to do the expansion, i.e. a lot of zeros.

2.31. Theorem (Cramer’s rule): Let A ∈ Mn×n be an invertible matrix, with columns
v1, ..., vn. Then the unique solution x = (x1, ..., xn)

t to the equation Ax = b is given by the formula

xi =
1

det(A)
det(v1, ..., vi−1, b, vi+1, ..., vn).

Proof. Suppose x is a solution. By definition of matrix multiplication,

b = Ax = x1v1 + ...+ xnvn.

Thus, expanding by linearity in the ith column,

det(v1, ..., vi−1, b, vi+1, ..., vn) =

n∑
r=1

xr det(v1, ..., vi−1, vr, vi+1, ..., vn).

But det(v1, ..., vi−1, b, vi+1, ..., vn) = 0 unless r = i, in which case it is det(A). This shows

det(v1, ..., vi−1, b, vi+1, ..., vn) = xi det(A).

12



2. Determinant

2.32. Theorem: Let A ∈ Mn×n(F ) be a square matrix with det(A) ̸= 0. Then the inverse
matrix A−1 has entries

(A−1)ij =
(−1)i+j det(Ã[ji])

det(A)
.

Proof. Let v1, ..., vn denote the columns of A, and w1, ..., wn the columns of A−1. Then wj = A−1ej ,
i.e., wj is the solution to Ax = ej , and the matrix entry (A−1)ij is the i-th component of this
solution. Thus, by Cramer’s rule

(A−1)ij =
1

det(A)
det(v1, ..., vi−1, ej , vi+1, ..., vn).

Since the i-th column only has one non-zero entry, given by a ′1′ in the j-th row. We can use
cofactor expansion in the i-th column and the only contribution to the summation comes from the
(j, i)-entry, with a sign (−1)i+j The matrix obtained by removing the j − th row and i-th column
is just Ã[ji]. Which gives us the desired equation.

2.33. Definition: The determinant of a linear transformation T ∈ L(V ) is defined as

det(T ) = det(A),

where A ∈ Mn×n(F ) is the matrix of T in any choice of basis of V .

2.34. Note: This is well defined only because the determinant of A is invariant under change
of basis.

(1). Under composition,

det(T1T2) = det(T1) det(T2)

(2). T is invertible if and only if det(T ) ̸= 0, and in this case

det(T−1) = det(T )−1

(3). The dual map T ′ ∈ L(V ′) has determinant

det(T ′) = det(T ).

(4). Suppose W ⊆ V is a T -invariant subspace. Then T induces a map on the quotient space
V/W , given by

T̃ (v +W ) = (Tv) +W.

And its determinant with T restricted to W , denotes T |W : W → W. is

det(T ) = det(T |W ) det(T̃ )

13
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1. Characteristic Polynomials

Section 1. Characteristic Polynomials

1.1. Theorem: A scalar λ ∈ F is an eigenvalue of T if and only if det(λI − t) = 0

Proof.

λ is an eigenvalue of T ⇐⇒ ∃v ∈ V, v ̸= 0 : Tv = λv

⇐⇒ ker(T − λI) ̸= 0

⇐⇒ (T − λI) is not invertible

⇐⇒ det(λI − T ) = 0.

1.2. Definition: The polynomial

q(z) = det(zI − T )

is called the characteristic polynomial of T . If A ∈ Mn×n(F ), we call q(z) = det(zI − A) the
characteristic polynomial of the matrix A.

1.3. Remark: The previous theorem shows that λ ∈ F is an eigenvalue of T if and only if λ is
a root of the characteristic polynomial. If F = C, we may use the fundamental theorem of linear
algebra to factor the polynomial as

q(z) = (z − λ1) · · · (z − λn),

where λ1, ..., λn are the eigenvalues (repeated according to their multiplicity).

1.4. Remark: If A is block upper triangular with A′, A′′, then the characteristic polynomials
are

qA(z) = qA′(z)qA′′(z).

1.5. Definition: A vector v ∈ V is called cyclic for T ∈ L(V ) if v, Tv, T 2v,... span all of v

1.6. Example: Suppose T ∈ L(V ) is a linear operator on a finite dimensional vector space,
and v ∈ V a non-zero vector. Consider the sequence of vectors

v1 = v, v2 = Tv, ..., vi = T i−1v, ...

Since dimV < ∞, there is a unique smallest k such that v1, ..., vk+1 are linearly dependent, hence

vk+1 ∈ W = span{v1, ..., vk}.

The subspace W is T -invariant, and we call W the T -cyclic subspace generated by v.

15



1. Characteristic Polynomials

1.7. Remark: If v is a cyclic, then the vectors

v1 = v, v2 = Tv, ..., vn = Tn−1v

are a basis of V . In particular,

Tvn = −a0v1 − · · · − an−1vn.

for some a0, ..., an ∈ F . Together with

Tv1 = v2, ..., T vn−1 = vn

this gives the matrix of T :

A =


0 0 0 · · · 0 −a0
1 0 0 · · · 0 −a1
0 1 0 · · · 0 −a2
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1 −an−1


such a matrix is called a companion matrix.

TBD
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1. Real Inner Product Spaces

Section 1. Real Inner Product Spaces

1.1. Definition: Given vectors

v = a1e1 + · · ·+ anen, w = b1e1 + · · ·+ bnen ∈ Rn

their dot product is defined by

v · w = a1b1 + a2b2 + · · ·+ anbn

1.2. Remark: The dot product can be thought of as matrix multiplication if the elements of
Rn as column matrices:

v · w = vtw

1.3. Definition: The norm of v = a1e1 + · · ·+ anen ∈ Rn is defined as

||v|| =
√
v · v =

√
a21 + · · ·+ a2n

1.4. Motivation: These definitions are motivated by geometry. Consider the case of R2 and
write v, w in polar coordinates:

v = r

(
cosα
sinα

)
, w = s

(
cosβ
sinβ

)
where r, s ≥ 0. Then

||v|| = r, ||w|| = s,

are the lengths of the two vectors. From v · w = rs(cos(α) cos(β) + sin(α) sin(β)) = rs cos(α− β).
We see that

v · w = ||v|| ||w|| cos(θ)

where θ = α−β is the angle between the two vectors. The same interpretation also holds for n > 2,
or rather defines the lengths of vectors and the angle θ between vectors.

1.5. Generalizing from Rn to more general real vector spaces, we define

18



1. Real Inner Product Spaces

1.6. Definition (Inner products, real case): Let V be a vector space (possibly infinite
dimensional) over F = R. An inner product on V is a positive definite symmetric bilinear
form on V . That is, it is given by a bilinear map:

⟨·, ·⟩ : V × V → R

with the following properties:

(1). Symmetry: ⟨v, w⟩ = ⟨w, v⟩ for all v, w ∈ V ,

(2). Positivity: ⟨v, v⟩ ≥ 0 for all v,

(3). Definiteness: ⟨v, v⟩ = 0 if and only if v = 0.

V together with an inner product is called a (real) inner product space. The associated norm on
V is defined by

||v|| =
√
⟨v, v⟩

1.7. Example: Let Pn(R) be the vector space of polynomials of degree ≤ n. Let [a, b] ⊆ R be
a closed interval with a < b. Then the formula

⟨p, q⟩ =
∫ b

a
p(x)q(x)dx

defines an inner product on Pn(R)

1.8. Example: Let Mn×n(R) be the space of real n× n-matrices. Then

⟨A,B⟩ = tr(ABt)

defines an inner product. In fact,

tr(ABt) =
∑
kl

AklBkl,

so this is really the standard inner product on Rn2 ∼= Mn×n(R)
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2. Complex Inner Product Spaces

Section 2. Complex Inner Product Spaces

2.1. Recall that the absolute value of a complex number x = a+ bi is defined as |x| =
√
a2 + b2,

consistent with the identification of C = R2. For a complex vector

v = a1e1 + · · ·+ anen,

with ai ∈ C, we define

||v|| =
√

|a1|2 + · · ·+ |an|2

Note that this extends the definition of norm on Rn, and it also agrees with the norm on R2n

(if we identify Cn = R2n, by writing ak =Re(ak) + i Im(ak)). The absolute value is needed here as
we want ||v|| to be a nonnegative number.

2.2. Remark: Since ||v|| =
√
v · v is false, we instead define the inner product on Cn not as the

dot product, but as

⟨v, w⟩ = a1b1 + · · ·+ anbn,

where the bars denote complex conjugate.

2.3. Remark:

(1). Letting w = b1e1 + · · ·+ bnen, this can be written in terms of the dot product as v ·w = vtw.

(2). The restriction of the inner product to v, w ∈ Rn ⊆ Cn is the inner product on Rn.

(3). Under the identification of

Cn ∼= R2n

Re⟨v, w⟩ ∈ R of the complex inner product is the real inner product on R2n. On the other
hand, the imaginary part ω(v, w) = Im⟨v, w⟩ is not an inner product because it is skew-
symmetric: ω(v, w) = −ω(w, v).

2.4. Definition: Let V be a vector space (possibly infinite-dimensional) over F = C. An inner
product on V is a bilinear map

⟨·, ·⟩ : V × V → C

with the following properties:

(1). Linearity in the firs argument:

⟨v + v′, w⟩ = ⟨v, w⟩+ ⟨v′, w⟩, ⟨λv,w⟩ = λ⟨v, w⟩.

(2). Symmetry: ⟨v, w⟩ = ⟨w, v⟩ for all v, w ∈ V ,

(3). Positivity: ⟨v, v⟩ ≥ 0 for all v,

(4). Definiteness: ⟨v, v⟩ = 0 if and only if v = 0.
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2. Complex Inner Product Spaces

V together with an product is called a (complex) inner product space. The Associated norm on V
is defined by

||v|| =
√
⟨v, v⟩.

2.5. Note: Notice that conjugate linearity in the second argument comes from the symmetry
which involves a complex conjugation.

⟨v, λw⟩ = ⟨λw, v⟩ = λ⟨w, v⟩ = λ ⟨w, v⟩ = λ⟨v, w⟩

Let us also observe the scaling property of the norm:

||λv|| = |λ| ||v||

2.6. Example: Let Pn(C) be the vector space of complex polynomials of degree ≤ n. We may
restrict polynomials to complex valued function on R ⊆ C. Let [a, b] ⊆ R be a closed interval with
a < b. Then the formula

⟨p, q⟩ =
∫ b

a
p(x)q(x)dx

defines an inner product on Pn(C).

2.7. Example: On the vector space of complex n×n matrices, Mn×n(C), we have the operation
of conjugate transpose (adjoint):

A∗ = A
t

The formula

⟨A,B⟩ = tr(AB∗)

defines a complex inner product. In fact,

tr(AB∗) =
∑
kl

AklBkl

so this is really the standard inner product on Cn2 ∼= Mn×n(C)

2.8. Proposition: Suppose V is a inner product space, and W ⊆ V a linear subspace. Then
the restriction of the inner product to W is an inner product on W .

2.9. Proposition: Inner products are non-degenerate: if w ∈ V is such that ⟨v, w⟩ = 0 for all
v ∈ V , then w = 0. Similarly, if v ∈ V such that ⟨v, w⟩ = 0 for all w ∈ V , then v = 0.

Proof. If ⟨v, w⟩ = 0 for all v ∈ V , then in particular it holds for v = w. This gives ⟨w,w⟩ = 0,
hence w = 0 by definiteness.
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3. Important Properties and Theorems

Section 3. Important Properties and Theorems

3.1. Remark (Basic properties of an inner product):

(1). For each fixed u ∈ V , the function that takes v to ⟨v, u⟩ is a linear map from V to F .

(2). ⟨0, u⟩ for every u ∈ V .

(3). ⟨u, 0⟩ = 0 for every u ∈ V .

Proof. Part 1 follows from the linearity in the first slot. Part 2 follows from part 1 and the fact that
every linear map takes 0 to 0. Part 3 follows from part 2 and the conjugate symmetry property of
an inner product.

3.2. Definition: Two vectors u, v ∈ V are called orthogonal if ⟨u, v⟩ = 0.

3.3. The order of the vectors does not matter because ⟨u, v⟩ = 0 if and only if ⟨v, u⟩ = 0. We
usually say u and v are orthogonal or that u is orthogonal to v.

3.4. Motivation: In the usual sense of plane geometry in R2, we can think of the word
orthogonal as a fancy word meaning perpendicular. That is, in R2

⟨u, v⟩ = ||u||||v|| cos θ

so two vectors in R2 are orthogonal if and only if the cosine of the angle between them is 0, which
happens if and only if the vectors are perpendicular.

3.5. Proposition:

(a) 0 is orthogonal to every vector in V .

(b) 0 is the only vector in V that is orthogonal to itself.

3.6. Theorem (Pythagorean Theorem): Suppose u and v are orthogonal vectors in V .
Then

||u+ v||2 = ||u||2 + ||v||2

Proof. We have

||u+ v||2 = ⟨u+ v, u+ v⟩
= ⟨u, u⟩+ ⟨u, v⟩+ ⟨v, u⟩+ ⟨v, v⟩
= ||u||2 + ||v||2

as desired.
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3. Important Properties and Theorems

3.7. For vectors u, v ∈ V , with v ̸= 0. We want to be able to write u as a scalar multiple of v
plus a vector w orthogonal to v

3.8. Motivation: To achieve this, let c ∈ F denote a scalar, then

u = cv + (u− cv).

Thus we need to choose c so that v is orthogonal to (u− cv). In other words, we want

0 = ⟨u− cv, v⟩ = ⟨u, v⟩ − c||v||2.

So

c =
⟨u, v⟩
||v||2

Making this choice of c, we can write

u =
⟨u, v⟩
||v||2

v + (u− ⟨u, v⟩
||v||2

v).

3.9. Definition: The vector

projv(u) =
⟨u, v⟩
||v||2

v

is called the orthogonal projection of u onto the 1-dimensional subspace span(v) ⊆ V .

3.10. Definition (Orthogonal Decomposition): Suppose u, v ∈ V , with v ̸= 0. Let

c = ⟨u,v⟩
||v||2 and w = u− ⟨u,v⟩

||v||2 v. Then

⟨w, v⟩ = 0 and u = cv + w.

3.11. Theorem (Cauchy-Schwarz inequality): Let V be an inner product space. Suppose
u, v ∈ V . Then

|⟨u, v⟩| ≤ ||u|| ||v||.

With equality if and only if v, w are linearly dependent.

Proof. If v = 0, then both side of the equation is 0, so we can assume v ̸= 0. Consider the
decomposition

u = projv(u) + (u− projv(u))

By Pythagorean theorem,

||u||2 = ||projv(u)||2 + ||(u− projv(u))||2 ≥ ||projv(u)||2 =
|⟨v, w⟩|2

||w||2

rearrange and the inequality follows. If the equality holds, then v − projv(u) = 0, hence v is a
multiple of w. Conversely, if v = aw then |⟨v, w⟩| = |a| ||w||2 = ||v|| ||w||.
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3. Important Properties and Theorems

3.12. Theorem: suppose u, v ∈ V . Then

||u+ v|| ≤ ||u||+ ||v||,

where equality holds if and only if one of u, v is a nonnegative multiple of the other.

Proof. We have

||u+ v||2 = ⟨u+ v, u+ v⟩
= ⟨u, u⟩+ ⟨v, v⟩+ ⟨u, v⟩+ ⟨v, u⟩
= ⟨u, u⟩+ ⟨v, v⟩+ ⟨u, v⟩+ ⟨u, v⟩
= ||u||2 + ||v||2 + 2Re⟨u, v⟩
≤ ||u||2 + ||v||2 + 2|⟨u, v⟩|
≤ ||u||2 + ||v||2 + 2||u|| ||v||
= (||u||+ ||v||)2

where the first inequality from the properties of complex numbers, and the second inequality follows
from Cahchy-Schwarz. Taking the square roots of both sides of the inequality above gives the desired
result.
The proof above also shows that the Triangle Inequality is an equality if and only if

⟨u, v⟩ = ||u|| ||v||

If one of u, v is a nonnegative multiple of the other, then the above holds. Conversely, if the above
equation is true, then Cauchy-Schwarz Inequality implies that one of u, v must be a scalar multiple
of the other, and the equation also forces the scalar in question to be nonnegative, as desired.

3.13. Theorem: Suppose u, v ∈ V . Then

||u+ v||2 + ||u− v||2 = 2(||u||2 + ||v||2).

Proof. We have

||u+ v||2 + ||u− v||2 = ⟨u+ v, u+ v⟩+ ⟨u− v, u− v⟩
= ||u||2 + ||v||2 + ⟨u, v⟩+ ⟨v, u⟩+ ||u||2 + ||v||2 − ⟨u, v⟩ − ⟨v, u⟩
= 2(||u||2 + ||v||2),

as desired.
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4. Orthonormal bases

Section 4. Orthonormal bases

4.1. Lemma: Suppose v1, ..., vk ∈ V are pairwise orthogonal non-zero vectors. Then they are
linearly independent.

Proof. Suppose a1v1 + · · ·+ akvk = 0. Taking the inner product with vj :

0 = ⟨a1v1 + · · ·+ akvk.vj⟩ = a1⟨v1, vj⟩+ · · ·+ ak⟨vk, vj⟩ = aj⟨vj , vj⟩ = aj ||vj ||2.

Dividing by ||vj ||2, we obtain that aj = 0.

4.2. Definition: A list of vectors v1, ..., vn of an inner product space V is called orthogonal if
it satisfies ⟨vj , vk⟩ = 0 for j ̸= k, and orthonormal if it satisfies

⟨vj , vk⟩ =

{
0 j ̸= k

1 j = k

4.3. Proposition: If e1, ..., em is an orthonormal list of vectors in V , then

||a1e1 + · · ·+ amem||2 = |a1|2 + · · ·+ |am|2

for all a1, ..., am ∈ F .

Proof. Because each ej has norm 1, this follows from repeated applications of the Pythagorean
Theorem.

4.4. Proposition: Suppose e1, ...en is an orthonormal basis of V and v ∈ V . Then

v = ⟨v, e1⟩e1 + · · ·+ ⟨v, en⟩en

and

||v||2 = |⟨v, e1⟩|2 + · · ·+ |⟨v, en⟩|2.

Proof. Since e1, ..., en is a basis of V , there exist scalars a1, ..., an such that

v = a1e1 + · · ·+ anen.

Because e1, ..., en is orthonormal, taking the inner product of both sides of this equation with ej
gives ⟨v, ej = aj . Thus the first equation holds, the second equation follows immediately from the
last proposition.

4.5. Motivation: The formulas above shows the importance of orthonormal list of vectors.
The following method which is an inductive method to turn any given lists into an orthogonal list
with the same span as the original list is called the Gram-Schimdt Procedure.
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4. Orthonormal bases

4.6. Definition (Gram-Schmidt Procedure): Suppose v1, ..., vm is a linearly independent
list of vectors in V . Let e1 =

v1
||v1|| . For j = 2, ...,m, define ej inductively by

ej =
vj −

∑j−1
n=1 projen(vj)

||vj −
∑j−1

n=1 projen(vj)||

Then e1, .., em is an orthonormal list of vectors in V such that

span(v1, ..., vj) = span(e1, ..., ej)

for j = 1, ...,m.

Proof. We can show by induction on j that the desired conclusion holds. When j = 1, span(v1) =span(e1)
because v1 is a positive multiple of e1.
Suppose 1 < j < m and we have that

span(v1, ..., vj−1) = span(e1, ..., ej−1).

Since v1, ..., vm is linearly independent, vj /∈span(e1, ..., ej−1). Hence we are not dividing by 0 in our
definition. Since dividing a vector by its norm produces a new vector with norm 1, thus ||ej || = 1.
Let 1 ≤ k < j, then

⟨ej , ek⟩ = ⟨
vj −

∑j−1
n=1 projen(vj)

||vj −
∑j−1

n=1 projen(vj)||
, ek⟩

=
⟨vj , ek⟩ − ⟨vj , ek⟩

||vj −
∑j−1

n=1 projen(vj)||
= 0.

Thus e1, ..., ej is an orthonormal list. From the definition of ej given above, we have vj ∈span(e1, ..., ej),
combining this with span(v1, ..., vj−1) = span(e1, ..., ej−1), we get

span(v1, ..., vj) ⊂ span(e1, ..., ej)

Since both lists are linearly independent, both spaces above have dimension j, and hence they must
be equal, completing the proof.

4.7. Remark: This orthonormal basis is also uniquely determined. Suppose

vj +

j−1∑
i=1

aiei

is orthogonal to e1, ..., ej−1. Then for k = 1, ..., j − 1

⟨vj , ek⟩+ ak⟨ek, ek⟩ = 0

which gives ak = − ⟨vj ,ek⟩
||ek||2

and so akek = −projek(vj).

4.8. Remark: The fact that span(e1, ..., ek) =span(v1, ..., vk) for all k ≤ j means that the
change of basis matrix is upper triangular. In fact:
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• The Gram Schimidt orthonormalization is the unique change to an orthonormal basis such
that the change of basis matrix is upper triangular, with positive diagonal diagonal.

4.9. Theorem: Suppose V is a finite-dimensional complex vector space and T ∈ L(V ). Then
T has an upper-triangular matrix with respect to some orthonormal basis of V .

Proof. Trivial.

4.10. Definition: Suppose V1, V2 are two inner product spaces, with inner products denoted
⟨·, ·⟩1, ⟨·, ·⟩2. A linear isomorphism T : V1 → V2 is called an isometric isomorphism if it satisfies

⟨Tx, Ty⟩2 = ⟨x, y⟩1

for all x, y ∈ V1. Thus, an isometric isomorphism specifies an identification of V1, V2 not only as
vector spaces but also as inner product spaces.

4.11. Proposition: For any two finite-dimensional inner product spaces V,W of the same
dimension, there exists an isometric isomorphism V → W .

Proof. Let v1, ..., vn be an orthonormal basis for V and w1, ..., wn an orthonormal basis for W .
Then the linear map T : V → W defined by T (vi) = wi is an isometric isomorphism. Indeed we
can check on the basis vectors:

⟨Tvj , T vk⟩ = ⟨wj , wk⟩ =

{
0 j ̸= k

1 j = k
= ⟨vj , vk⟩

Section 5. Linear Functionals on Inner Product Spaces

5.1. Intuition: Let V be an inner product space over F , then every w ∈ V defines a linear
functional:

φw : V → F, v 7→ ⟨v, w⟩.

This satisfies φw1+w2 = φw1 + φw2 and φλw = λφw. Hence the map

V → V ′, w 7→ φw

is conjugate linear. To make it linear, we define a new vector V as seen in the next proposition.

5.2. Proposition: Suppose V is finite dimensional, let V be the vector space which is equal to
V as a set, with the same addition, but with its scalar multiplication defined as:

λ ∗ v = λv.

Then the map

V → V ′, w 7→ φw
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5. Linear Functionals on Inner Product Spaces

is a linear isomorphism.

Proof. Since both sides have the same dimension, it is enough to show that the map is injective.
But φw = 0 (the zero linear functional) implies 0 = φw(w) = ⟨w,w⟩ = ||w||2, thus w = 0.

5.3. Definition: Suppose V is finite-dimensional and φ is a linear functional on V . Then there
is a unique vector u ∈ V such that

φ(v) = ⟨v, u⟩

for every v ∈ V .

Proof. By the previous proposition, every linear functional is of the form φw, for a unique w.

Proof 2. First we show the existence of a vector u ∈ V such that φ(v) = ⟨v, u⟩for every v ∈ V . Let
e1, ..., en be an orthonormal basis of V , Then

φ(v) = φ(⟨v, e1⟩e1 + · · ·+ ⟨v, en⟩en)
= ⟨v, e1φ(e1)⟩+ · · ·+ ⟨v, enφ(en)⟩
= ⟨v, φ(e1)e1 + · · ·+ φ(en)en⟩

for every v ∈ V . Thus let u = φ(e1)e1+ · · ·+φ(en)en gives us the desired result. Now to prove the
uniqueness part, suppose u1, u2 ∈ V are such that φ(v) = ⟨v, u1⟩ = ⟨v, u2⟩ for every v ∈ V . Then

0 = ⟨v, u1⟩ − ⟨v, u2⟩ = ⟨v, u1 − u2⟩

for every v ∈ V . Taking v = u1 − u2 shows that u1 − u2 = 0. In other words, u1 = u2, completing
the proof.

5.4. Proposition: Given any basis v1, ..., vn of an inner product space V , there is a unique
basis w1, ..., wn of V such that

⟨vj , wk⟩ =

{
0 j ̸= k

1 j = k

for all j, k.

Proof. Let φ1, ..., φn ∈ V ′ be the dual basis of the dual space, i.e.

φk(vj) =

{
0 j ̸= k

1 j = k.

Since φk is a linear functional on V , the Riesz representation theorem, gives wk ∈ V such that
φk = φwk

= ⟨·, wk⟩. These then satisfy

⟨vj , wk⟩ = φk(vj) =

{
0 j ̸= k

1 j = k

The vectors w1, ..., wn ∈ V are again a basis: Indeed, suppose∑
j

ajwj = 0.
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6. Orthogonal Complements

Then ak = 0 for all k, by the calculation

0 =
∑
j

⟨vk, ajwj⟩ =
∑
j

aj⟨vk, wj⟩ =
∑
j

ajφj(vk) = ak.

Section 6. Orthogonal Complements

6.1. Definition: Let U be a subset of V , then the orthogonal complement of U , denoted
U⊥, is the set of all vectors in V that are orthogonal to every vector in U :

U⊥ = {v ∈ V : ⟨v, u⟩ = 0 for every u ∈ U}

6.2. Proposition:

(a) If U is a subset of V , then U⊥ is a subspace of V .

(b) {0}⊥ = V .

(c) V ⊥ = {0}.
(d) If U is a subset of V , then U ∩ U⊥ ⊆ {0}
(e) If U and W are subsets of V and U ⊆ W , then W⊥ ⊆ U⊥.

Proof. (a) Suppose U is a subset of V , then ⟨0, u⟩ = 0 for every u ∈ U ; thus 0 ∈ U⊥. Suppose
v, w ∈ U⊥, λ ∈ F . If u ∈ U , then

⟨λv + w, u⟩ = λ⟨v, u⟩+ ⟨w, u⟩ = 0 + 0 = 0.

Thus U⊥ is closed under addition and scalar multiplication.

(b) Suppose v ∈ V . Then ⟨v, 0⟩ = 0, which implies that v ∈ {0}⊥. Thus {0}⊥ = V .

(c) Suppose v ∈ V ⊥. Then ⟨v, v⟩ = 0, which implies that v = 0, thus V ⊥ = {0}.
(d) Suppose U is a subset of V and v ∈ U ∩U⊥. Then ⟨v, v⟩ = 0, which implies that v = 0. Thus

U ∩ U⊥ ⊆ {0}.
(e) Suppose U and W are subsets of V and U ⊂ W . Suppose v ∈ W⊥. Then ⟨v, u⟩ = 0 for every

u ∈ W , which implies that ⟨v, u⟩ = 0 for every u ∈ U . Hence v ∈ U⊥. Thus W⊥ ⊆ U⊥.

6.3. Proposition: Suppose U is a finite-dimensional subspace of V . Then

V = U ⊕ U⊥.

Proof. First we will show

V = U + U⊥

Suppose v ∈ V . Let e1, ..., em be an orthonormal basis of U . Let u = ⟨v, e1⟩e1 + · · · + ⟨v, em⟩em
and w = v − ⟨v, e1⟩e1 − · · · − ⟨v, em⟩em, then

v = u+ w
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Clearly u ∈ U . Because e1, ..., em is an orthonormal list, for each j = 1, ...,m we have

⟨w, ej⟩ = ⟨v, ej⟩ − ⟨v, ej⟩ = 0.

Hence w is orthogonal to every vector in span(e1, ..., em), so w ∈ U⊥. Thus V = U + U⊥. Then
since U ∩ U⊥ = {0} this implies that V = U ⊕ U⊥.

Alternate proof. Let v1, ..., vm be an orthonormal basis of U , and define a map

T : V → W, v 7→
∑
j

projvj (v) =
m∑
j=1

⟨v, vj⟩vj .

Then T (vj) = vj for j = 1, ...,m, hence T is

6.4. Proposition: Suppose V is finite-dimensional and U is a subspace of V . Then

dimU⊥ = dimV − dimU

Proof. Trivial.

6.5. Proposition: Suppose U is a finite-dimensional subspace of V . Then

U = (U⊥)⊥

Proof. First we lets show U ⊂ (U⊥)⊥. Suppose u ∈ U . Then ⟨u, v⟩ = 0 for every v ∈ U⊥, thus
u is orthogonal to every vector in U⊥, so we have u ∈ (U⊥)⊥. To prove the inclusion in the
other direction, suppose v ∈ (U⊥)⊥. Then write v = u + w, where u ∈ U and w ∈ U⊥. We have
v − u = w ∈ U⊥. However v and u are both in (U⊥)⊥, which implies that v − u ∈ (U⊥)⊥. Thus
v − u ∈ U⊥ ∩ (U⊥)⊥, which implies that v − u is orthogonal to itself, so v − u = 0, which implies
that v = 0, which implies that v ∈ U . Thus (U⊥)⊥ ⊂ U , completing the proof for the other
direction.

6.6. Definition: An operator P ∈ L(V ) is called a projection if it satisfies

P 2 = P

This implies that I − P is also a projection. Writing vectors as v = Pv + (I − P )v determines a
direct sum decomposition

V = V1 ⊕ V2

where

V1 = range(P ), V2 = range(I − P ).

and also

V1 = null(I − P ), V2 = null(P ).

Conversely, every direct sum decomposition V = V1 ⊕ V2 defines a projection: writing vectors in
V as v = v1 + v2, with vi ∈ Vi and Pv = v1, then P 2 = P and range(P ) = V1 and null(P ) = V2.
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6. Orthogonal Complements

6.7. Definition: Suppose U is a finite-dimension subspace of V . The orthogonal projection
of V onto U is the operator PU ∈ L(V ) defined as follows: For v ∈ V , write v = u + w, where
u ∈ U and w ∈ U⊥. Then PUv = u.

6.8. Proposition: Suppose U is a finite-dimensional subspace of V and v ∈ V . Then

(a) PU ∈ L(V );

(b) v − PUv ∈ U⊥;

(c) ||PUv|| ≤ ||v||;

Proof. (a) Clearly 0 ∈ PU , suppose v1, v2 ∈ V , λ ∈ F . Write

v1 = u1 + w1 and v2 = u2 + w2

with u1, u2 ∈ U and w1, w2 ∈ U⊥. Thus PUv1 = u1 and PUv2 = u2, so

PU (λv1 + v2) = λu1 + u2 = λPUv1 + PUv2.

hence PU is a linear map from V to V .

(b) If v = u+ w with u ∈ U and w ∈ U⊥, then

v − PUv = v − u = w ∈ U⊥.

(c) By orthogonal decomposition, v = PUv + (v − PUv), by Pythagoras’ theorem

||v||2 = ||PUv||2 + ||v − PUv||2 ≥ ||PUv||2

with equality if and only if v − PUv = 0, which means PUv = v, which implies v ∈ U .

6.9. Theorem: Let V be finite-dimensional. A projection P ∈ L(V ) is an orthogonal projection
if and only if it satisfies:

||Pv|| ≤ ||v||

for all v ∈ V .

Proof. We have already proved the forward direction. For the other direction, suppose ||Pv|| ≤ ||v||
for all v ∈ V , we must show that

V = range(P )⊕ null(P )

is an orthogonal decomposition, i.e. all vectors in null(P ) are orthogonal to all vectors in range(P ).
This is equivalent to proving null(P )⊥ ⊆ range(P ).
Let v ∈null(P )⊥. Then

=⇒ Pv = v − (I − P )v

is an orthogonal decomposition of Pv, as v ∈ null(P )⊥ and (I −P )v ∈ range(I −P ) = null(P ). By
Pythagorean theorem, we have

||Pv||2 = ||v||2 + ||(I − P )v||2 ≥ ||v||2
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6. Orthogonal Complements

with equality if and only if (I−P )v = 0. But since we have ||Pv||2 ≤ ||v||2 by assumption, equality
must hold. Hence, we have shown that v ∈ null(P )⊥ implies v ∈ null(I − P ) = range(P ), i.e.

null(P )⊥ ⊆ range(P )

6.10. Often times we are given a subspace U of V and a point v ∈ V , and we want to find a
point u ∈ U such that ||v − u|| is as small as possible. The following result says that the desired
point is the orthogonal projection PUv.

6.11. Proposition: Suppose U is a finite-dimensional subspace of V , v ∈ V , and u ∈ U . Then

||v − PUv|| ≤ ||v − u||.

With equality if and only if u = PUv.

Proof. We have

||v − PUv||2 ≤ ||v − PUv||2 + ||PUv − u||2

= ||(v − PUv) + (PUv − u)||2

= ||v − u||2,

Where the second line comes from the Pythagorean Theorem, as v − PUv ∈ U⊥ and PUv − u ∈ U .
The above inequality is an equality if and only if ||PUv − u|| = 0, which happens if and only if
u = PUv.
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1. Definitions and basic properties

Section 1. Definitions and basic properties

1.1. Definition: Suppose T ∈ L(V,W ). The adjoint of T is the unique operator T ∗ ∈ L(W,V )
such that

⟨Tv,w⟩ = ⟨v, T ∗w⟩

for every v ∈ V , w ∈ W .

Proof. For fixed w ∈ W , the map φ : v 7→ ⟨Tv,w⟩ is a linear functional on V . By the Riesz
representation theorem, there is a unique vector w′ ∈ V such that φ(v) = ⟨v, w⟩ for all v ∈ V .
Define T ∗w = w′, then T ∗ ∈ V is the unique vector such that

⟨Tv,w⟩ = ⟨v, T ∗w⟩

for all v ∈ V. The proof that T ∗ is a linear map is left as an exercise for the reader.

1.2. Proposition:

(1). (S + T )∗ = S∗ + T ∗ for all S, T ∈ L(V,W );

(2). (λT )∗ = λT ∗ for all λ ∈ F and T ∈ L(V,W );

(3). (T ∗)∗ = T for all T ∈ L(V,W );

(4). I∗ = I, where I is the identity operator on V ;

(5). (ST )∗ = T ∗S∗ for all T ∈ L(V,W ) and S ∈ L(W,U) where U is an inner product space of
F .

(6). If T ∈ L(V,W ) is invertible, then T ∗ ∈ L(W,V ) is invertible, and (T−1)∗ = (T ∗)−1.

Proof. (1). Suppose S, T ∈ L(V,W ). If v ∈ V , w ∈ W , then

⟨v, (S + T )∗w⟩ = ⟨(S + T )v, w⟩ = ⟨Sv,w⟩+ ⟨Tv,w⟩ = ⟨v, S∗w⟩+ ⟨v, T ∗w⟩ = ⟨v, S∗w+ T ∗w⟩,

as desired.

(2). Let λ ∈ F and T ∈ L(V,W ). If v ∈ V and w ∈ W , then

⟨v, (λT )∗w⟩ = ⟨λTv,w⟩ = λ⟨Tv,w⟩ = λ⟨v, T ∗w⟩ = ⟨v, λT ∗w⟩,

as desired.

(3). Suppose T ∈ L(V,W ). If v ∈ V and w ∈ W , then

⟨w, (T ∗)∗v⟩ = ⟨T ∗w, v⟩ = ⟨v, T ∗w⟩ = ∠Tv,w⟩ = ⟨w, Tv⟩.

Thus (T ∗)∗v = Tv,as desired.

(4). If v, u ∈ V , then

⟨v, I∗u⟩ = ⟨Iv, u⟩ = ⟨v, u⟩,

Thus I∗u = u, as desired.

(5). Suppose T ∈ L(V,W ) and S ∈ L(W,U). If v ∈ V and u ∈ U , then

⟨v, (ST )∗u⟩ = ⟨STv, u⟩ = ⟨Tv, S∗u⟩ = ⟨v, T ∗(S∗u)⟩,
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1. Definitions and basic properties

as desired.

1.3. Proposition: Suppose T ∈ L(V,W ), then

(1). null T ∗ = (range T )⊥.

(2). range T ∗ = (null T )⊥.

(3). null T = (range T ∗)⊥;

(4). range T = (null T ∗)⊥.

Proof. To prove (1), let w ∈ W , then

w ∈ null T ∗ ⇐⇒ T ∗w = 0 ⇐⇒ ⟨v, T ∗⟩ = 0 ∀v ∈ V ⇐⇒ ⟨Tv,w⟩ = 0 ∀v ∈ V ⇐⇒ w ∈ (range T )⊥

Thus null T ∗ = (range T )⊥, proving (1). Taking the orthogonal complement of both side of (1),
we get (4). Replacing T by T ∗ in (1) and (4) gives (2) and (3), since (T ∗)∗ = T .

1.4. Corollary: rank (T ∗) = rank (T )

Proof.

rank (T ∗) = dimW − dimnull (T ∗) = dimW − dim range (T )⊥ = dim range (T ) = rank (T )

In particular, T is injective if and only if T ∗ is surjective, and T is surjective if and only if T ∗ is
injective.
http://mathonline.wikidot.com/injectivity-and-surjectivity-of-the-adjoint-of-a-linear-map

1.5. Definition: The conjugate transpose of anm-by-nmatrix is the n-by-mmatrix obtained
by taking the transpose and then takings the conjugate of each entry.

1.6. Proposition: Let T ∈ L(V,W ). Suppose v1, ..., vn is an orthonormal basis of V and
w1, ..., wm is an orthonormal basis of W . If the matrix of T is given in these bases by A ∈
Mm×n(F ). Then the matrix of T ∗ ∈ L(W,V ) is given by the conjugate transpose matrix, A

t
.

Proof. Recall that we obtain the kth column of A by writing Avk as a linear combination of wi’s.
Thus since

Tvk = ⟨Tvk, w1⟩w1 + · · ·+ ⟨Tvk, wm⟩wm.

Thus Ajk = ⟨Tvk , wj⟩. Similarly, Bkj = ⟨T ∗wj , vk⟩, but

Bkj = ⟨T ∗wj , vk⟩ = ⟨vk, T ∗wj⟩ = ⟨Tvk, wj⟩ = Ajk,

as required.

1.1 Adjoint and Dual Map

TBD
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1. Definitions and basic properties

1.7. Proposition: Let V be a finite dimensional inner product space, and P ∈ L(V ) be a
projection, so that P 2 = P . Then P ∗ is again a projection:

(P ∗)2 = P ∗P ∗ = (PP )∗ = P ∗

Recall that P is an orthogonal projection if and only if null (P )⊥ =range (P ) are orthogonal.
We can conclude:

1.8. Theorem: A projection P ∈ L(V ) is an orthogonal projection if and only if P = P ∗.

1.9. Proposition: The minimal polynomials of T and T ∗ are related by

pT ∗(z) = pT (z).

Proof. By definition, pT ∗ is the monic polynomial of the smallest degree such that pT ∗(T ∗) = 0.
Let pT ∗(z) = a0 + a1z + · · · + anz

n and p(z) = a0 + a1z + · · · + anz
n. Then p(z) = p(z). For

T ∈ L(V ), we have

(p(T ))∗ = (a0 + a1T + · · ·+ anT
n)∗ = a0 + a1T

∗ + · · ·+ an(T
∗)n = p(T ∗)

And hence

pT ∗(T ) = 0

and so pT ∗ = pT .

1.10. Proposition: For any T ∈ L(V ),

det(T ∗) = det(T ).

Proof. In terms of an orthonormal basis, if A is the matrix of T , then the matrix of T ∗ is A
t
. Which

implies

det(T∗) = det(A
t
) = det(A) = det(A) = det(T )

1.11. Proposition: The characteristic polynomials of T and T ∗ are related by

qT ∗(z) = qT (z).

Proof. qT ∗(z) = det(zI − T ∗) = det((zI − T )∗) = det(zI − T ) = qT (z) = qT (z).

1.12. Proposition: Let J ∈ Mn×n(C) be a JNF for T ∈ L(V ). Then the complex conjugate
J ∈ Mn×n(C) is a JNF for T ∗
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2. Self-Adjoint Operators

Proof. Choose an orthonormal basis of V , and let A be the matrix corresponding to T . Then

A = CJC−1.

As we’ve shown, A∗ = A
t
is the matrix corresponding to T ∗ as well as every complex matrix is

similar to its transpose; hence the JNF of A
t
coincides with A, and since the JNF of A is J , we get

the desired result.

Section 2. Self-Adjoint Operators

2.1. Definition: An operator T ∈ L(V ) is self-adjoint if T = T ∗, in other words,

⟨Tv,w⟩ = ⟨v, Tw⟩

for all v, w ∈ V . An operator is skew-adjoint if T ∗ = −T .

2.2. Example: For every T ∈ L(V ), the operators

T + T ∗, TT ∗, T ∗T

are self-adjoint, while T − T ∗ is skew-adjoint.If F = C, then multiplication by i takes self-adjoint
operators to skew-adjoint operators and vice versa.

2.3. Example: Let v = Fn, so that operators on V are just matrices A ∈ Mn×n(F ). The
matrix A is self-adjoint if it is equal to its conjugate transpose. If F = R, then it simply means
that A must be symmetric. for F = C, we have that all diagonal entries must be real.

2.4. Proposition: Every eigenvalue of a self-adjoint operator is real.

Proof. Suppose T is a self-adjoint operator on V . Let λ be an eigenvalue of T , and let v be a
nonzero vector in V such that Tv = λv. Then

λ||v||2 = ⟨λv, v⟩ = ⟨Tv, v⟩ = ⟨v, Tv⟩ = ⟨v, λv⟩ = λ||v||2

Since λ = λ, it must be real.

2.5. Proposition: Over C, Tv is orthogonal to v for all v only for the 0 operator, i.e. suppose
V is a complex inner product space and T ∈ L(V ). Suppose

⟨Tv, v⟩ = 0

for all v ∈ V . Then T = 0.

Proof. We have

⟨Tu,w⟩ = ⟨T (u+ w), u+ w⟩ − ⟨T (u− w), u− w⟩
4

+
⟨T (u+ iw), u+ iw⟩ − ⟨T (u− iw), u− iw⟩

4
i

for all u,w ∈ V , as can be verified by computing the right side. Note that each term on the right
side is of the form ⟨Tv, v⟩ for appropriate v ∈ V . Thus our hypothesis implies that ⟨Tu,w⟩ = 0 for
all u,w ∈ V if we take w = Tu. This implies that T = 0.
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2.6. Proposition: Suppose V is a complex inner product space and T ∈ L(V ). Then T is
self-adjoint if and only if

⟨Tv, v⟩ ∈ R

for every v ∈ V .

Proof. Let v ∈ V . Then

⟨Tv, v⟩ − ⟨Tv, v⟩ = ⟨Tv, v⟩ − ⟨v, Tv⟩ = ⟨Tv, v⟩ − ⟨T ∗ v, v⟩ = ⟨(T − T ∗)v, v⟩.

If ⟨Tv, v ∈ R for every v ∈ V , then the left side of the equation above equal 0, so ⟨(T −T ∗)v, v⟩ = 0
for every v ∈ V . This implies that T − T ∗ = 0. Hence T is self-adjoint.
Conversely, if T is self-adjoint, then the right side of the equation above equal 0, so ⟨Tv, v⟩ = Tv, v
for every v ∈ V . Thus ⟨Tv, v⟩ ∈ R for every v ∈ V , as desired.

2.7. Proposition: Suppose T is a self-adjoint operator on V such that

⟨Tv, v⟩ = 0

for all v ∈ V . Then T = 0.

Proof. We have already proved this when V is a complex inner product space. Thus let V be a
real inner product space. If u,w ∈ V , then

⟨Tu,w⟩ = ⟨T (u+ w), u+ w⟩ − ⟨T (u− w), u− w⟩
4

;

this is proved by computing the right side using the equation

⟨Tw, u⟩ = ⟨w, Tu⟩ = ⟨Tu,w⟩,

where the first equality holds because T is self-adjoint and the second equality holds because we
are in a real inner product space.
Each term on the right side of the big equation if of the form ⟨Tv, v⟩ for appropriate v. Thus
⟨Tu,w⟩ = 0 for all u,w ∈ V , which implies that T = 0.

The proof below gives a more intuitive solution using theorem 3.6

Alternative proof. If S is self-adjoint, then there exist an orthonormal basis consisting of eigenvec-
tors of S. Suppose ⟨Sv, v⟩ = 0 for all v ∈ V . Let vi to be an eigenvector with eigenvalue λi, we get
⟨Svi, vi⟩ = ⟨λvi, vi⟩ = 0. This shows that Svi = λivi = 0 for all basis vectors and hence S = 0.

Section 3. Decomposition into eigenspaces

3.1. Throughout, we will take V to be a finite-dimensional real or complex inner product space.
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3.2. Note: Recall that in general, invariant subspaces need not admit invariant complements,
for self-adjoint operators, this problem does not occur.

3.3. Lemma: If T = T ∗, then every T -invariant subspace W has an invariant complement. In
fact, W⊥ is T -invariant

Proof. Suppose T = T ∗, and suppose T (W ) ⊆ W .Let v ∈ W⊥, we want to show that Tv ∈ W⊥.
This follows from the following: let w ∈ W ,

⟨Tv,w⟩ = ⟨v, T ∗w⟩ = ⟨v, Tw⟩ = 0.

Hence, since Tv,w are orthogonal for all w, v we get the desired result.

3.4. Lemma: If T = T ∗, the eigenspaces E(λ, T ),E(µ, T ) corresponding to distinct eigenvalues
are orthogonal:

E(λ, T ) ⊆ E(µ, T )⊥

Proof. Let λ, µ be two distinct eigenvalues of T . Let v ∈ E(λ, T ) and w ∈ E(µ, T ), we have

λ⟨v, w⟩ = ⟨Tv,w⟩ = ⟨v, Tw⟩ = ⟨v, µw⟩ = µ⟨v, w⟩.

Since λ ̸= µ, this means ⟨v, w⟩ = 0.

3.5. Lemma: Suppose T ∈ L(V ) is self-adjoint, then T has at least one eigenvector in V .

Proof. If F = C, we know every T ∈ L(V ) has an eigenvector and the condition of self-adjoint
isn’t needed. For F = R, it suffices to show that the set of eigenvalues of T is non-empty. Let
A ∈ Mn×n(R) be the matrix of T in an orthonormal basis of V and it suffices to show that A has
an eigenvector in Rn. We may regard A as a complex self-adjoint matrix whose entries happen to
be real. As such it has eigenvectors v ∈ Cn:

Av = λv

By the previous lemma, λ is real. Hence, taking the component wise real part of v, we find that
Re(v) is an eigenvector (unless it is zero, in which case take the imaginary prat.)

3.6. Theorem: suppose T ∈ L(V ) is self-adjoint, where n = dim(V ) < ∞. Then T is
diagonalizable. In fact, V admits an orthonormal basis v1, ..., vn consisting of eigenvectors of T .

Proof. Choose an eigenvector v1 ∈ V and normalize it to ||v1||2 = 1. The orthogonal space
span{v1}⊥ is T -invariant. Then the restriction of T to the orthogonal complement has an eigen-
vector v2, which we can normalize to ||v2||2 = 1. Preceding by induction, we obtain the desired
orthonormal basis consisting of eigenvectors.
Conversely, given T , suppose there exists an orthonormal basis v1, ..., vn consisting of eignvectors
of T in which T is diagonal, then

Tvi = λivi
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for some λi ∈ C. We claim that

T ∗vi = λivi.

To see this, first note that T ∗vi must be a scalar multiple of vi, since its inner prducts with vj for
j ̸= i are zero:

⟨T ∗vi, vj⟩ = ⟨vi, T vj⟩ = λj⟨vi, vj⟩ = 0.

Hence vi is an eigenvector for T ∗. The eigenvalue can then be found:

⟨T ∗vi, vi⟩ = ⟨vi, T vi⟩ = ⟨vi, λivi⟩ = λi⟨vi, vi⟩ = λi.

Now, evaluating both sides of T ∗T = TT ∗ on basis vectors:

T ∗Tvi = λiT
∗vi = |λi|2vi

and similarly

TT ∗vi = |λi|2vi.

Hence, T is a normal operator
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1. Unitary Operators

Section 1. Unitary Operators

1.1. Definition: Let V be an inner product space, an operator T ∈ L(V ) is called unitary if
it is invertible and satisfies

⟨Tv, Tw⟩ = ⟨v, w⟩

for all v, w ∈ V . For F = R, a unitary operator is also called an orthogonal operator. A matrix
is called unitary if the associated linear operator is on Fn is unitary.

1.2. Proposition: If T ∈ calL(V ) is a unitary transformation, then so is T−1. If S, T ∈ L(V )
are unitary transformations, then so is ST .

Proof. The first claim follows from:

⟨T−1v, T−1w⟩ = ⟨TT−1v, TT−1w⟩ = ⟨v, w⟩

for all v, w ∈ V . The second claim is obtained similarly from

⟨STv, STw⟩ = ⟨Tv, Tw⟩ = ⟨v, w⟩.

1.3. Proposition: If V is finite dimensional, an operato T ∈ L(V ) satisfying

⟨Tv, Tw⟩ = ⟨v, w⟩

for all v, w ∈ V is always invertible.

Proof. Suppose v ∈ V with Tv = 0. Then

||Tv||2 = ⟨Tv, Tv⟩ = ⟨v, v⟩ = ||v||2

shows that v = 0.

1.4. Proposition: Suppose V is finite dimensional. Then the following are equivalent:

(1). T ∈ L(V ) is unitary.

(2). There is an orthonormal basis v1, ..., vn such that the images Tv1, ..., T vn are again an or-
thonormal basis.

(3). For every orthonormal basis v1, ..., vn, the images Tv1, ..., T vn are again an orthonormal basis.

Proof. We have (3) implies (1) and (1) implies (3), since ⟨Tvi, T vj⟩ = ⟨vi, vj⟩. Suppose (2) hold, let
v1, ..., vn be an orthonormal basis such that Tv1, ..., T vn is on orthonormal basis. Given v, w ∈ V ,
we can write

v =
∑
i

aivi, w =
∑
i

bivi.
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1. Unitary Operators

Then

⟨Tv, Tw⟩ = ⟨
∑
i

aiTvi,
∑
j

bjTvj⟩ =
∑
ij

aibj⟨Tvi, T vj⟩ =
∑
ij

aibj⟨vi, vj⟩ = ⟨v, w⟩.

Thus (2) implies (1).

1.5. Corollary: A matrix A ∈ Mn×n(F ) is unitary if and only if its columns are an orthonormal
basis of Fn.

Proof. The columns of A are the image Aei of the standard basis vector ei.

1.6. Theorem: An operator T is unitary if and only if

TT ∗ = T ∗T = I.

Proof. Suppose T is unitary, then

⟨Tv, Tw⟩ = ⟨v, w⟩ =⇒ ⟨v, T ∗Tw⟩ = ⟨v, w⟩

for all v, w ∈ V , hence T ∗Tw = w for all w, hence T ∗T = I.
Since T is invertible, we may multiply by T−1 from the right and by T from the left to obtain
TT ∗ = I. This means, T is unitary if and only if it is invertible, with inverse the adjoint:

T−1 = T ∗.

In particular, T is unitary implies T ∗ is unitary.

1.7. Corollary: The determinant of a unitary operator satisfies

| det(T )| = 1.

In particular, for F = R we have det(T ) = 1 or det(T ) = −1.

Proof. Apply det to the equation I = T ∗T :

1 = det(I) = det(T ∗T ) = det(T ∗) det(T ) = det(T ) det(T ) = |det(T )|2.

1.8. Corollary: If A ∈ Mn× n(F ) is unitary then also At and A are unitary.

1.9. Proposition: Suppose T ∈ L(V ) is a unitary operator on a real or complex inner product
space V , with V finite dimensional. Then

• For every T -invariant subspace W the orthogonal complement W⊥is T -invariant

• All eigenvalues λ of T have absolute value equal to 1.

• The eigenspaces E(λ, T ),E(µ, T ) corresponding to distinct eigenvalues λ, µ are orthogonal.
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1. Unitary Operators

Proof. (1). Note that since T is invertible, the invariance property TW ⊆ W implies TW = W .
Applying T−1 to both sides, W = T−1W . Let v ∈ W⊥, for all w ∈ W ,

⟨Tv,w⟩ = ⟨v, T ∗w⟩ = ⟨v, T−1w⟩ = 0

Thus Tv ∈ W⊥.

(2). Suppose v ∈ V is an eigenvector with eigenvalue λ. Then

⟨v, v⟩ = ⟨Tv, Tv⟩ = ⟨λv, λv, ⟩ = |λ|2⟨v, v⟩

Hence |λ|2 = 1.

(3). Suppose v ∈ V is an eigenvector with eigenvalue λ, and w ∈ V is an eigenvector eigenvalue
µ, where µ ̸= λ. Then

⟨v, w⟩ = ⟨Tv, Tw⟩ = ⟨λv, µw⟩ = λµ⟨v, w⟩ = λµ−1⟨v, w⟩.

Since λµ−1 ̸= 1, hence ⟨v, w⟩ = 0.

1.10. Theorem: Suppose T ∈ L(V ) is a unitary operator on a complex vector space of fi-
nite dimension. Then T is diagonalizable. In fact, T admits an orthonormal basis consisting of
eigenvectors of T .

Proof. Similar to the case of self-adjoint operators, proving by induction that for all k ≤ n, there
exists an orthonormal set of eigenvectors of T . The base case k = 0 is clearly true. For each k < n,
given an orthonormal set of eigenvectors v1, ..., vk of T , the space span{v1, ..., vk} is T -invariant,
hence span{v1, ..., vk}⊥ is T -invariant, and T acts as a unitary operator on this space, hence we can
pick another unit length eigenvector vk+1 ∈ span{v1, ..., vk}⊥.
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1. Definitions and basic properties

Section 1. Definitions and basic properties

1.1. Definition: An operator T on an inner product space V is called normal if it commutes
with its adjoint:

TT ∗ = T ∗T.

A matrix A is normal if it satisfies AA∗ = A∗A, where A∗ = A
t
.

1.2. Example:

• Self-adjoint, skew-adjoint, and unitary operators are all normal.

• If T is normal and λ ∈ F , then λT is normal:

(λT )∗(λT ) = λT ∗λT = |λ|2T ∗T = |λ|2TT ∗ = (λT )(λT )∗.

• If T is normal and invertible, then T−1 is normal:

T−1(T−1)∗ = T−1(T ∗)−1 = (TT ∗)−1 = (T ∗T )−1 = (T ∗)−1T−1 = (T−1)∗T−1.

• If T is normal and p(z) is any polynomial, then p(T ) is normal. This is because all powers of
T commutes with all all powers of T ∗:

(Tn)(T ∗)k = T · · ·TT ∗ · · ·T ∗ = T ∗ · · ·T ∗T · · ·T = (T ∗)k(Tn).

Along with p(T )∗ = p(T ∗), we get:

p(T )(p(T ))∗ = (a0 + a1T + · · ·+ anT
n)(a0 + a1T

∗ + · · ·+ an(T
∗)n),

Hence we see they are equal since they commute term by term.

1.3. A simple fact which was used in the third bullet point above is that should be always be
remembered is that the adjoint of the inverse is equal to the inverse of the adjoint.

1.4. Fact: Let T be an operator on an inner product space V . Then

(T ∗)−1 = (T−1)∗.

Proof. Fix v ∈ V , for any w ∈ V :

⟨T ∗(T−1)∗v, w⟩ = ⟨(T−1)∗v, Tw⟩ = ⟨v, T−1Tw⟩ = ⟨v, w⟩.

Hence T ∗(T−1)∗ = I which implies (T−1)∗ = (T ∗)−1.
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2. Eigenspace decomposition for normal operators

1.5. Proposition: Let V be a finite-dimensional inner product space. Then T ∈ L(V ) is normal
if and only if it has the property

||Tv||2 = ||T ∗v||2

for all v ∈ V .

Proof.

T is normal ⇐⇒ T ∗T − TT ∗ = 0

⇐⇒ ⟨(T ∗T − TT ∗)v, v⟩ = 0 for all v ∈ V

⇐⇒ ⟨T ∗Tv, v⟩ = ⟨TT ∗v, v⟩ for all v ∈ V

⇐⇒ ⟨Tv, Tv⟩ = ⟨T ∗v, T ∗v⟩ for all v ∈ V

⇐⇒ ||Tv||2 = ||T ∗v||2 for all v ∈ V.

Section 2. Eigenspace decomposition for normal operators

2.1. Our aim ultimately is to prove the complex spectral theorem (spectral theorem for normal
operators). To begin, we will need to prove some smaller results.

2.2. Lemma: If T, S ∈ L(V ) are operators on a complex vector space, and ST = TS, then
there exists a joint eigenvector v ∈ V, v ̸= 0:

Tv = λv, Sv = µv.

Proof. Let λ ∈ C with E(λ, T ) ̸= 0. For v ∈ E(λ, T ), we have

TSv = STv = Sλv = λSv,

which implies Sv ∈ E(λ, T ). This shows that E(λ, T ) is S-invariant. Simply choose any v ∈ E(λ, T )
to be an eigenvector of S|E(λ,T ) with eigenvalue µ gives us the desired result.

2.3. Remark: This generalizes to any finite collection of operators T1, ..., Tk on a complex
vector space, i.e. if the operators commute pairwise then there exists a joint eigenvector for all of
these vectors.

2.4. Lemma: Suppose T ∈ L(V ) is any linear operator on a finite-dimensional inner product
space. If W ⊆ V is T -invariant then W⊥ is T ∗-invariant. Hence, if W is invariant under both T
and T ∗, then so is W⊥.
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2. Eigenspace decomposition for normal operators

Proof. Suppose first W ⊆ V is T -invariant. Let v ∈ W⊥,then for all w ∈ W we have

⟨T ∗v, w⟩ = ⟨v, Tw⟩ = 0,

this means all vectors in W is orthogonal to T ∗v, and hence

T ∗W⊥ ⊆ W⊥.

Similarly, if we have T ∗W ⊆ W , then

TW⊥ = (T ∗)∗W⊥ ⊆ W⊥.

2.5. Lemma: Let T ∈ L(V ) be an operator on a finite dimensional vector space and W an
T -invariant subspace, then (T |W )∗ = (T ∗|W ).

Proof. By properties of adjoint, fix x ∈ W , then for any y ∈ W .

⟨(T |W )∗x, y⟩ = ⟨x, T |W y⟩ = ⟨x, Ty⟩ = ⟨T ∗x, y⟩

Hence,

⟨(T |W )∗x− T ∗x, y⟩ = 0.

Since y can be anything, let y = (T |W )∗x− T ∗x, and by non-degeneracy of inner product

⟨(T |W )∗x− T ∗x, (T |W )∗x− T ∗x⟩ = 0 =⇒ (T |W )∗x = T ∗x.

2.6. Theorem (Complex spectral theorem): Let T ∈ L(V ) be an operator on a finite-
dimensional complex inner product space V . Then

T is normal ⇐⇒ There exists an orthonormal basis of V consisting of eigenvectors of T .

Proof. Suppose T is normal. By induction we may construct an orthonormal set {v1, ..., vk} consist-
ing of joint eigenvectors for T, T ∗. The induction start with k = 0 which by lemma 2.2, there exists
a joint eigenvector v. For the inductive step, suppose {v1, ..., vk} is an orthonormal set consisting
of joint eigenvectors for T, T ∗, then span{v1, ..., vk} is invariant under both T and T ∗, by 2.4, then
span{v1, ..., vk}⊥ is then invariant under both T and T ∗ as well. Then using 2.5,

T |W ◦ T ∗|W = (T ◦ T ∗)|W = (T ∗ ◦ T )|W = T ∗|W ◦ T |W ,

and so the restrictions of T, T ∗ to span{v1, ..., vk}⊥ commute, hence they must again admit a joint
unit eigenvector vk+1.
Conversely, given T , suppose there exists an orthonormal basis v1, ..., vn in which T is diagonal.
Then

Tvi = λivi and T ∗vi = λivi.

Now evaluating both sides of TT ∗ and T ∗T on the basis vectors, we see

T ∗Tvi = λiT
∗vi = |λi|2vi,
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3. Spectral resolution

and similarly

TT ∗vi = λiTvi = |λi|2vi,

and so TT ∗ = T ∗T , as desired.

2.7. Two more important propositions which we’ve seen before are as follows:

2.8. Proposition: Suppose T is normal and v is an eigenvector of T with eigenvalue λ, then v
is also an eigenvector of T ∗ with eigenvalue λ.

Proof. Since T is normal, T − λI can be easily verify to be normal as well. Using 1.5, we have

0 = ||(T − λI)v|| = ||(T − λI)∗v|| = (T ∗ − λI)v||.

Hence v is an eigenvector of T ∗ with eigenvalue λ, as desired.

2.9. Proposition: Suppose T is normal, then eigenvectors of T corresponding to distinct
eigenvalues are orthogonal.

Proof. Suppose α, β are distinct eigenvalue of T , with corresponding eigenvectors u, v. Thus Tu =
αu and Tv = βv. Thus,

(α− β)⟨u, v⟩ = ⟨αu, v⟩ − ⟨u, βv⟩
= ⟨Tu, v⟩ = ⟨u, T ∗v⟩
= 0.

Because α ̸= β, it implies that ⟨u, v⟩ = 0, hence they are orthogonal.

Section 3. Spectral resolution

3.1. An important consequence of the spectral theorem is as follows:

3.2. Theorem (Spectral resolution): Let T be a normal operator on a finite dimensional
complex inner product space V . Let Pλ ∈ L(V ) be the orthogonal projection to the eigenspace
E(λ, T ). Then

PλPµ =

{
0 λ ̸= µ

, Pλ λ = µ

∑
λ

Pλ = I

and the operator T as a sum is equal to

T =
∑
λ

λPλ.
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3. Spectral resolution

This formula is most often referred to as the spectral resolution of T .

Proof. The first identity simply states that the eigenspaces for different eigenvalues are orthogonal
i.e. Pλ vanishes on ran(Pµ) = E(µ, T ). The second identity holds true on any eigenvector v ∈
E(µ, T ), since Pλ(v) = 0 for all λ ̸= µ and Pµ(v) = v. Likewise, this implies the spectral resolution
on any eigenvectors in E(µ, T ), since∑

λ

λPλ(v) = µPµ(v) = µv = Tv.

3.3. Proposition (Orthogonal projection formula): If W ⊂ Fn is a subspace, and v1, ..., vk
is an orthonormal basis of W , then the matrix of orthogonal projection to W is given by

P =
k∑

i=1

viv
∗
i

where v1 ∈ Fn is an element of Mn×1(F ), and v∗i ∈ M1×n(F ) is the conjugate transpose matrix.

Proof. Suppose v ∈ W⊥, then it clearly holds as v∗i v = ⟨v, vi⟩ = 0, and for the basis vectors vj ∈ W ,
the properties of orthonormal basis gives us that v∗i vj = ⟨vj , vi⟩ vanishes when i ̸= j, and is equal
to 1 is i = j.

3.4. Remark: The equation v∗i v = ⟨v, vi comes from the fact that inner product on complex
vector space is defined as

⟨v, w⟩ = a1b1 + · · ·+ anb2

and the fact that an inner product of 2 vectors can be thought of as the dot product of 2 column
vectors. Hence we would want to take the complex conjugate of v∗i to get back to vi.

3.5. Example: Consider the matrix

A =

(
a b
−b a

)
with complex numbers a, b ∈ C. This is a normal opreator as it is the sum of two normal operators.
The characteristic polynomial can be calculator to be (z − a)2 + b2 = a2 − 2az + (a2 + b2) with
roots

λ1 = a+ ib, λ2 = a− ib.

Note that a, b need not be real. The normalized eigenvector for A is

v1 =
1√
2

(
1
i

)
, v2 =

1√
2

(
1
−i

)
.
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3. Spectral resolution

By the above proposition, we can find that te corresponding projections are:

Pλ1 = v1v
8
1 =

1

2

(
1 −i
i 1

)
, Pλ2 = v2v

∗
2 =

1

2

(
1 i
−i 1

)
.

Hence, the spectral resolution of our operator is

A = (a+ ib)
1

2

(
1 −i
i 1

)
+ (a− ib)

1

2

(
1 i
−i 1

)

3.6. Remark: Some neat applications of spectral resolution are:

• The spectral resolution of the adjoint is simply:

T ∗ =
∑
λ

λPλ.

• Taking powers of T , ans using the fact that PλPµ = 0 for µ ̸= λ:

T k = (
∑
λ

λPλ)
k =

∑
λ1

· · ·
∑
λk

λ1 · · ·λkPλ1 · · ·Pλk
=

∑
λ

λkPλ.

Where the last equalities comes from the fact the only non-zero summation terms is when
λ1 = · · · = λk and hence P k

λ = P by properties of orthogonal projection.

More generally, for any polynomial q(z), we can plug in and see

q(T ) =
∑
λ

q(λ)Pλ.

Hence, to take a polynomial function of T , we keep the same eigenvectors but get new eigenvalues.
Note that q(T ) depends only on the value of q on the eigenvalues of T , with this, an interesting
possibility arises. Let

Spec(T ) ⊂ C,

to be the spectrum of T , i.e. the set of eigenvalues of T , which is a finite subset of the complex
plane. Then for any complex-valued function:

f : Spec(T ) → C

on this finite set, we define

f(T ) =
∑
λ

f(λ)Pλ.

This implies that f only has to be defined on the eigenvalues of T for it to be defined for f(T ).

3.7. Proposition: For any normal operator T , and any f , the operator f(T ) has the same
eigenvectors as T , with eigenvalues f(λ).

Proof. We can verify by applying f(T ) to an eigenvector v ∈ E(µ, T ).
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3. Spectral resolution

3.8. (Cont’d): f(T ) is also normal, since V has an orthonormal basis consisting of eigenvectors
of f(T ), and

Spec(f(T )) = f(Spec(T )).

Some other easily verifiable properties are:

• If f is the restriction of some polynomial q(z), then f(T ) = q(T ).

• Special cases:

f(λ) = λ =⇒ f(T ) = T, f(λ) = 1 =⇒ f(T ) = I.

•

(f + g)(T ) = f(T ) + g(T ), (λf)(T ) = λf(T )

for a ∈ C, and

(fg)(T ) = f(T )g(T )

•

(f ◦ g)(T ) = f(g(T ))

where f is a function on the image g(Spec(T )) = Spec(g(T )).

• Let f be the complex conjugate of f defined by f(λ) = f(λ), then

f(T )∗ = f(T ).

Special cases: f(λ) = λ =⇒ f(T ) = T ∗. We hence can also deduce that T ∗ has the same
eigenvectors as T , we complex conjugate eigenvalues λ

All of this allows us to take fancy function of T like the ’absolute value’

|T | ∈ L(V )

which is a self-adjoint operator. However, always remember that this very much depends on T
being normal.
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1. Definitions and basic properties

Section 1. Definitions and basic properties

1.1. We continue with the assumption of V being a complex inner product space of finite
dimension. We have sen that self-adjoint operators are like real numbers, skew-adjoint operators
like imaginary numbers, and unitary operators are like complex numbers of absolute value 1. The
following definition generalizes positive real numbers:

1.2. Proposition: For a self-adjoint operator T ∈ L(V ), the following conditions are equivalent:

The eigenvalues of T are non-negative ⇐⇒ For all v ∈ V, ⟨Tv, v⟩ ≥ 0.

Proof. Suppose for all ∈ V, ⟨Tv, v⟩ ≥ 0, then in particular this must hold true for all eigenvectors.
Let v be an eigenvector for the eigenvalue λ, then ⟨Tv, v⟩ = λ⟨v, v⟩ ≥ 0. Hence λ ≥ 0.
Now suppose that all eigenvalues of T are non-negative. Let T =

∑
λ λPλ be the spectral decompo-

sition of T . FOr an orthogonal projection P , we have ⟨Pv, v⟩ = ⟨P 2v, v⟩ = ⟨Pv, Pv⟩ = ||Pv||2 ≥ 0.
Hence

⟨Tv, v⟩ =
∑
λ

λ||Pλv||2 ≥ 0.

1.3. Definition: An operator T ∈ L(V ) is positive if T is self-adjoint and

⟨Tv, v⟩ ≥ 0

for all v ∈ V .

1.4. Remark: In this terminology, 0 is considered positive, however one could require a stronger
condition that ⟨Tv, v⟩ > 0 for all nonzero v ∈ V , which would be equivalent to all eigenvalues of T
being strictly positve. This stronger notion is called strictly positive.

1.5. Example:

(1). The zero operator and the identity operators are positive,

(2). For any T ∈ calL(V ), the operators TT ∗ and T ∗T are positive:

⟨T ∗Tv, v⟩ = ⟨Tv, Tv⟩ = ||Tv||2 ≥ 0.

(3). All orthogonal projections P = P ∗ = P 2 are positive.

(4). If T ∈ calL(V ) is normal, and any function f : Spec(T ) → C taking values in [0,∞), then
operator f(T ) is positive. In particular, |T | is positive.

1.6. Proposition: If T1, T2 ∈ L(V ) are positive operators, and a1, a2 ≥ 0, then a1T1 + a2T2 is
positive.
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2. Polar decomposition and singular values

Proof. For all v ∈ V ,

⟨(a1T1 + a2T2)v, v⟩ = a1⟨T1v, v⟩+ a2⟨T2v, v⟩ ≥ 0.

1.7. Definition: An operator R is called a square root of an operator T if R2 = T .

1.8. Proposition (Characterization of positive operators): If T ∈ L(V ) is positive, then
T admits a unique positive square root.

Proof. To prove existence, since Spec(T ) ⊆ [0,∞), we may apply functional calculus to restriction
of the positive square root

√
· : [0,∞) → [0,∞) to define an operator S =

√
T with S2 = T , which

is
√
T =

∑
λ

√
λPλ.

To prove uniqueness, if S is any square root, and v ∈ E(µ, S) is an eigenvector, then v ∈ E(µ2, T ),
as Tv = SSv = µSv = µ2v. Hence v ∈ E(λ, T ) for some eigenvalue λ of T where µ =

√
λ. In other

words, Sv =
√
Tv for all eigenvectors of S and so S =

√
T (since there exists an orthonormal basis

consisting of eigenvalues).

Section 2. Polar decomposition and singular values

2.1. Motivation: Any complex number z may be written as a product of a positive number r
and a complex number u of absolute value 1, formally:

z = |z| · z

|z|−1
= ru

The decomposition is unique when z ̸= 0, and with our analogy between complex numbers and
operator, we hope to extend this to operators.

2.2. Theorem: For any invertible T ∈ L(V ), there are unique operators U ∈ L(V ) and
R ∈ L(V ) such that U is unitary, R is positive, and

T = UR.

Proof. Suppose T = UR, then T ∗T = R∗U∗UR = RU−1UR = R2, hence R =
√
T ∗T . If T is

invertible, then T ∗T is also invertible, and hence R is invertible. For if not, then there would exist
a nonzero vector x such that Rx = 0 =⇒ R2x = 0 =⇒ T ∗Tx = 0, which contradicts the
invertibility of T ∗T . In this case U = TR−1, and we can check that it is indeed unitary using
R∗ = R:

U∗U = (R−1)∗T ∗TR−1 = R−1R2R−1 = I.
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2. Polar decomposition and singular values

2.3. Remark: The unitary operator above is written to the left, there is another polar decom-
position T = RU where the unitary operator is written to the right, where we would have to taken
R =

√
TT ∗ instead.

The polar decomposition is a bit more tricky for T not invertible, we will need to first prove
some lemmas:

2.4. Lemma: For finite-dimensional inner product spaces V,W , and any T ∈ L(V,W ), there
are orthogonal decomposition.

V = null(T )⊕ ran(T ∗), W = null(T ∗)⊕ ran(T ).

The operator T restricts to an isomorphism T1 : ran(T
∗) → ran(T ).

Proof. We have already proved that the respective subspaces are indeed orthogonal. Since the
dimension of a subspace and its orthogonal complement adds up to the total dimension, we have
that they must be direct sums. An analogous argument can be made for the second formula.

2.5. Lemma: For finite-dimensional inner product spaces V,W and any T ∈ L(V,W ),

null(T ) = null(T ∗T ), ran(T ∗) = ran(T ∗T ).

Proof. For the first equality, let v ∈ V such that T ∗Tv = 0, then 0 = ⟨T ∗Tv, v⟩ = ⟨Tv, Tv⟩ =
||Tv||2, hence Tv = 0; conversely, if Tv = 0, then T ∗Tv = 0 as well. For the second equality, note
that ran(T ∗T ) is the orthogonal complement of null(T ∗T ) = null(T ), using the previous lemma,
ran(T ∗) = ran(T ∗T ).

2.6. Theorem (Polar decomposition of operators): For any T ∈ calL(V ), there are
operators U ∈ L(V ) and R ∈ L(V ) where U is unitary and R is positive and

T = UR.

Here R is unique and equal to
√
T ∗T .

Proof. First, if such a decomposition exists, then T ∗T = R∗U∗UR = R2, hence R =
√
T ∗T .

To prove the existence of such a decomposition, we shall define U as a sum of two isometric
isomorphisms

U1 : ran(T
∗) → ran(T ), U2 : null(T ) → null(T ∗).

Actually, we may take U2 as any isometric isomorphisms(for example, the map from a given or-
thonormal basis of null(T ) to an orthonormal basis of null(T ∗)). For the definition of U1, let

T1 : ran(T
∗) → ran(T )

be the restriction of T by lemma above, and

R1 =
√
T ∗
1 T1 : ran(T

∗) → ran(T ).
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Since T ∗
1 T1 = (T ∗T )|ran(T ∗), R1 then coincides with the restriction of R =

√
T ∗T . The null space

of R (a normal operator) coincides with the null space of its square, T ∗T , hence with null(T ) =
ran(T ∗)⊥, we have

null(R) = null(R2) = null(T ∗T ) = null(T ) = ran(T ∗)⊥.

Hence, R1 is invertible, as all vectors in null(R) are in ran(T ∗)⊥. We may put

U1 = T1R
−1
1 .

Note this is how we defined U in the case where T is invertible, and by the same reasoning it is
unitary:

U∗
1U1 = (R−1

1 )∗T1T
∗T1R

−1
1 = (R−1

1 )R2
1R

−1
1 = I.

Finally, let U = U1 + U2, so

Uv = U1v1 + U2v2

where we write v = v1 + v2 with v1 ∈ ran(T ∗), v2 ∈ null(T ). Using pythagoras’ theorem, we see
that U is indeed unitary(isometry):

||Uv||2 = ||U1v1||2 + ||U2v2||2 = ||v1||2 + ||v2||2 = ||v||2.

Therefore, we have T = UR where Tv = Tv1 and similarly

URv = URv1 = U1R1v1 = T1v1 = Tv1.

2.7. Remark: The restriction of U to ran(T ∗) is a uniquely determined isometric isomorphism
ran(T ∗) → ran(T ), hence the ambiguity in the choice of U

Section 3. Singular Values

3.1. Definition: Let T ∈ L(V,W ) be a linear map between finite-dimensional inner product
spaces. The singular values of T are the eigenvalues of

√
T ∗T , where the multiplicity of a singular

value is its multiplicity as an eigenvalue of
√
T ∗T .

3.2. Remark: In order to compute the singular values of T , it is not necessary to actually find
the square root of T ∗T , as they are simply the square roots of the eigenvalues of T ∗T

3.3. Given T ∈ calL(V,W ), recall that null(T )⊥ = ran(T ∗) = ran(T ∗T ). Let

v1, ..., vk ∈ ran(T ∗)

be an orthonormal basis consisting of eigenvectors of T ∗T with corresponding eigenvalues s21, ..., s
2
k,

the squares of the non-zero singular values. If we restrict T to an isomorphism from ran(T ∗) →
ran(T ), the basis vi determines a basis of ran(T ):
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3.4. Lemma: The vectors w1, ..., wk given by

wi =
1

si
T (vi)

are an orthonormal basis of ran(T ). In fact, they are eigenvectors of TT ∗, with eigenvalues s2i .

Proof. We check:

⟨wi, wj⟩ =
1

sisj
⟨Tvi, T vj⟩ =

1

sisj
⟨T ∗Tvi, vj⟩ =

si
sj
⟨vi, vj⟩ =

{
0 i ̸= j

1 i = j

and

TT ∗wi =
1

si
TT ∗T (vi) = siTvi = s21wi.

3.5. The formula rearranged to

T (vi) = siwi

describes T |ran(T ∗) in terms of a basis, but since T vanishes on ran(T ∗)⊥ = null(T ), it describes T
itself! Explicitly, we have

T (v) =
k∑

i=1

si⟨v, vi⟩wi

Indeed, if v ∈ ran(T ∗)⊥ = null(T ), both sides are 0, and for v = vk, it reduces to the expression
above

3.6. Theorem (Singular value decomposition): Every operator T ∈ L(V,W ) may be
written in the form

T (v) =
k∑

i=1

s1⟨v, vi⟩wi

where s1, .., wk > 0, and v1, ..., vk and w1, ..., wk are orthonormal sets of vectors. In this expression,
the sis are the strictly positive singular values, the vi are unit eigenvectors of T ∗T , and the wi are
unit eigenvector of TT ∗, with

Tvi = siwi, T
∗wi = sivi.

Proof. We have proved most of this above, it only remains to show that if T is given by this formula,
then si are the strictly positive singular values. The formula gives that T (vj) = sjwj , and the dual
map is computed as

⟨T ∗w, v⟩ = ⟨w, Tv⟩ =
k∑

i=1

si⟨w,wi⟩⟨vi, v⟩,

58



3. Singular Values

for w ∈ W, v ∈ V . Hence

T ∗(w) =
k∑

i=1

si⟨w,wi⟩vi.

Putting w = wj this shows T ∗(wj) = sjvj . Together this gives

T ∗Tvi = siT
∗wi = s2i vi,

and similarly, TT ∗wi = s2iwi. These are all the eigenvector for non-zero eigenvalues for T ∗T and
TT ∗, since the rank of these operators cannot be larger than k.

3.7. Remark: In the case of a normal operator, we can take vi to be eigenvectors of T ,
with eigenvalues λi, and so si = |λi|, and wi =

λi
|λi|vi. Which we see that the spectral resolution

T =
∑

i λiviv
∗
i is related to the singular value decomposition.

3.8. Singular value decomposition is also very useful for operators thought of as matrices.
Suppose A ∈ Mn×n(C) is invertible, then all of its singular values are strictly positive. Let
v1, ..., vn and w1, ..., wn be constructed as above. Denoted by

U1 = (v1, ..., vn), U2 = (w1, ..., wn),

which are unitary matrices having these bases as their columns and

D =


s1 0 · · · 0

0 s2 · · ·
...

... · · · . . .
...

0 · · · 0 sn


the diagonal matrix having the singular values as its entries. Then Avi = siwi means

AU1 = U2D,

or

A = U2DU−1
1 .

This gives us the following version of SVD.

3.9. Theorem: Every invertible n× n matrix A can be written in the form

A = U2DU−1
1

where U1, U2 are unitary, and D is a diagonal matrix with strictly positive entries.

3.10. Remark: This is also related to the polar decomposition A = UR if we just let U =
U2U

−1
1 and R = U1DU−1

1 . SO once we have the singular decomposition we also get the polar
decomposition.
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3.11. Note: For matrices A ∈ Mm×n(C) that are not square, (or have a null space), the
singular value decomposition is more messy. As usual, we can think of A as a linear map Cn → Cm.
Construct an orthonormal basis for ran(A∗) v1, ..., vk, and an orthonormal basis of ran(A) w1, ..., wk

as before. Then extend to orthonormal basis v1, ..., vn of Cn and w1, ..., wm of Cm, respectively. Let
U1 be the unitary matrix having v1, .., vn as its columns, and U2 be the matrix having w1, ..., wn

as its columns, and let D ∈ Mm×n(C) be the matrix having si as its (i, i) entry for i ≤ k, and all
other entries equal to zero. Then

A = U2DU−1
1 .

In summary:

3.12. Theorem: Every matrix A ∈ Mm×n can be written in the form

A = U2DU−1
1

where U1 ∈ Mn×n(C), U2 ∈ Mm×m are unitary, and D ∈ Mm×n has strictly positive (i, i) entries
for i ≤ k and all other entries equal to zero.

3.13. Remark: Note that

A∗ = U1D
∗U−1

2

is the singular value decomposition for A∗. Hence, the calculation for A,A∗ are essentially the same.
In practice, one would start with AA∗ or A∗A, depending on which of the matrices is smaller.
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Section 1. Schur’s Theorem

1.1. Theorem: Let V be a finite-dimensional complex inner product space, and T ∈ L(V ).
Then there exists an orthonormal basis v1, ..., vn such that the matrix of T in this basis is upper
triangular.

Proof. Pick any basis w1, ..., wn in which T is upper triangular, which means

Twi = span{w1, ..., wi}

for all i = 1, ..., n. Such a basis always exist by the Jordan Normal Form. Let

Wi = span{w1, ..., wi} ⊆ V.

Then

0 = W0 ⊆ W1 ⊆ W2 ⊆ · · · ⊆ Wn = V

are all T -invariant subspaces with dim Wi = i, hence dimWi − dimWi−1 = 1 and so Wi ∩ Wi−1

is 1-dimensional. Let each vi be a unit vector in Wi ∩W⊥
i−1, then each vi ∈ Wi while vi+1 ∈ W⊥

i .
Hence set of unit vectors v1, ..., vn forms an orthonormal basis of V . Since

Tvi ∈ Wi = span{v1, ..., vn}

we have T is upper-triangular with respect to this basis.

1.2. Remark: We can use Gram-Schmidt to show this as well.

1.3. Begin proving the following theorems, lets first prove an important lemma which will be
quite useful.

1.4. Lemma: A matrix T is unitary, if and only if the columns of T form an orthonormal basis.

Proof. By definition, T is unitary if and only if TT ∗ = I. The (i, j)-th entry of TT ∗, by definition
of matrix multiplication, is

[TT ∗]i,j =
∑
k

tikt
∗
kj

since T ∗ = T
t
, we have t∗kj = tjk, hence we are really just taking the inner product of the i-th

column and j-th columns. However T is unitary if and only if

δi,j =

{
0 i ̸= j

1 i = j

hence we can see that T unitary if and only if the columns of T are an orthonormal basis.
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1. Schur’s Theorem

1.5. Theorem: The Schur’s theorem for matrices state every complex matrix A may be written
where

A = UBU−1

where U is unitary and B is upper triangular.

Proof. Let v1, ..., vn be the orthonormal basis from Schur’s theorem, and let B be the upper-
triangular matrix with respect to this basis. Then Avi = Bvi =

∑
j≤iBjivj . Taking v1, ..., vn as

the columns of U , by the above lemma, U is unitary, hence letting B be the upper triangular matrix
having Bji as its non-zero entries, we get AU = UB which implies A = UBU−1.

1.6. Note that in the above proof, we used the fact that given two matrices A and U having
v1, ..., vn as its columns.

A
(
v1, ..., vn

)
=

(
Av1, ..., Avn

)
In general, we cannot bring A into Jordan Normal Form through unitary transformations, but we
can at least bring it into upper triangular form.
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1. Schur’s Theorem

1.7. Theorem: Every complex matrix A ∈ Mn× n(C) may be written in the form

A = UB

where U is unitary, and B is upper triangular with positive diagonal entries. If A is invertible then
this decomposition is unique with strictly positive diagonal entries.

Proof. Let w1, ..., wn be the columns of A. Then A = UB says

wi =
∑
j

Bji

where v1, ..., vn is the orthonormal basis given by the columns of U .So given a matrix A, we want
to construct the vi’s such that Bii ≥ 0 and Bji = 0 for all j > i. Equivalently, this is saying that
we want

wi ∈ span(v1, ..., vn)

for all i = 0, ..., n and the i-th coefficient of each wi to be ≥ 0.
If A is invertible, then by Gram-Schmidt, there exists a unique orthonormal basis w1, ..., wn which
satisfies our requirement, as Gram-Schmidt produces an orthonormal basis in which the change
of basis matrix is upper triangular with positive diagonal entries. If A is not invertible, we use a
slightly modified version of Gram Schmidt. First suppose by induction that we have an orthonormal
set of vectors v1, ..., vk satisfied our conditions. To construct vk+1, we consider two cases:
Case 1: If wk+1 /∈ span{v1, ..., vk}, simply apply Gram-Schmidt to wk+1 to get vk+1.
Case 2: If wk+1 ∈ span{v1, ..., vk}, then take any unit vector vk+1 that is orthogonal to v1, ..., vk.
Then we have wk+1 ∈ span{v1, ..., vk+1} and the k + 1-th coefficient is 0.
Since U is unitary and B is upper triangular, this concludes the proof.

1.8. Remark: For A invertible, we can go one step further and decompose B = DN where D
is a diagonal matrix and N is upper triangular with 1’s on the diagonal with row reduction. The
resulting decomposition

A = UDN

is called the Iwasawa decomposition of an invertible matrix.

1.9. One might try to relate the decomposition A = UB to the polar decomposition A = U ′P ,
of course, the unitary matrices are not the same, but we can relate B and P as follows:

P 2 = P ∗P = A∗A = B∗B,

so P =
√
B∗B.

1.10. Theorem (Cholesky decomposition): Every positive definite matrix A can be written
as

A = B∗B

where B is upper triangular, with positive diagonal entries. If A is strictly positive definite then
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1. Schur’s Theorem

this decomposition is unique.

Proof. since A is positive, it admits a unique positive square root
√
A, write

√
A = UB where B is

upper triangular with positive diagonal entries. Then

A = (
√
A)2 = (

√
A)∗

√
A = B∗B.
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Section 1. Complexification

1.1. Most of our discussion of inner product spaces has been focused on the field of complex
vectors, and that is because there are some important differences in the real case. In particular,
the complex spectral theorem for normal operators becomes false in R unless the operator is self-
adjoint. To make up for this, one of the main technique is to replace the real vector space with a
complex one, through a process of ’complexification’.

1.2. Note: For a matrix A ∈ Mm×n(R), we can view it as a complex matrix who entries happen
to be real. Lets denote it by AC ∈ Mm×n(C) for now. As linear maps,

A : Rn → Rm AC : Cn → Cm.

We call this extended map the complexification of A. If m = n, then

det(AC) = det(A)

since both are given by the same formula as a sum over permutations. Similarly,

tr(A) = tr(AC).

1.3. Remark: For a real polynomial

p(t) = a0 + · · ·+ amtm

let

pC(z) = a0 + · · ·+ amzm

be the corresponding complex polynomial (with real coefficients). This is the complexification of
p.

1.4. Proposition: Let A ∈ Mn×n(R) be a real n × n-matrix, with characteristic polynomial q
and minimal polynomial p. Then AC has characteristic polynomial qC and minimal polynomial pC.

Proof. The characteristic polynomial of A is

q(t) = det(tI −A) =
∑
σ

sign(σ)(tI −A)σ(1)1 · · · (tI −A)σ(n)n

where the characteristic polynomial of AC is

q(t) = det(tI−AC) =
∑
σ

sign(σ)(tI−AC)σ(1)1 · · · (tI−AC)σ(n)n =
∑
σ

sign(σ)(tI−A)σ(1)1 · · · (tI−A)σ(n)n.

Hence we get that the char polynomial of AC can be obtained by replacing the real variable t with
the complex variable z, hence it is indeed qC.
The minimal polynomial of A is the unique monic polynomial p(t) = a0+a1t+ · · ·+am−1t

m−1+ tm

of smallest degree m with p(A) = 0, then PC(AC) = 0, which means pC is divisible by the minimal
polynomial of AC. Now to show that the minimal polynomial is indeed pC, suppose the minimal
polynomial of AC is c0 + c1z + · · ·+ ck−1z

k−1 + zk with complex numbers ci. Taking the real part
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of each copmmlex coefficients and using the fact that entries of AC and all its powers are real, we
obtain

Re(c0) +Re(c1)A+ · · ·+Ak = 0

Since p is divisible by AC, this means that k = m. The uniqueness of the minimal polynomial of
AC shows that ci = ai.

1.5. Proposition: Let A ∈ Mn×n(R) be a real n × n-matrix. In the Jordan Normal Form of
AC, the number of Jordan blocks of size k for λ equals the number of Jordan blocks of size k for λ.
In particular, λ is an eigenvalue if and only if λ is an eigenvalue.

Proof. Let C ∈ Mn×n(C) be an invertible complex matrix with

CACC
−1 = J.

Taking the complex conjugate of this equation, AC = AC, we have

CACC
−1

= J.

clearly J is also a JNF. By uniqueness of JNF, J and J must be the same matrix up to rearrangement
of the Jordan blocks. Hence the desired result, in particular, the complex eigenvalues of a real matrix
come matrix come in complex conjugate pairs, and its complex conjugate have the same geometric
and algebraic multiplicities. Moreover, since

(λI −AC)v = 0 ⇐⇒ (λI −AC)v = 0

complex conjugation, we see:

1.6. Lemma: For A ∈ Mn×n(R), complex conjugation takes eigenvectors for the eigenvalues λ
of AC to eigenvectors for the eigenvalue λ.

1.7. Remark: More generally,

(λI −AC)
kv = 0 ⇐⇒ (λI −AC)

kv = 0

so we have a similar argument for generalized eigenvectors.

1.8. Definition: Let V be a real vector space. The complexification of V , denoted VC = V ×V .
An element of VC is an ordered pair (u, v) written as u + iv, where u, v ∈ V . Addition on VC is
defined by

(u1 + iw1) + (u2 + iw2) = (u1 + u2) + i(w1 + w2)

for u1, u2, w1, w2 ∈ V and scalar multiplication by a complex number a+ bi is defined by

(a+ bi)(u+ iv) = (au− bv) + i(av + bu)

for a, b ∈ R and u, v ∈ V .
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1.9. Lemma: Vc with the operations of addition and scalar multiplication defined as above is a
complex vector space.

1.10. Remark: We think of V as a subset of VC consisting of vectors u+ i0, where we usually
just write u in place of u+ i0.

1.11. Example:

• (Rn)C = Cn

• Mm×n(R)C = Mm×n(C)
• P(R)C = P(C)

1.12. Note: For u,w ∈ V , we call

Re(u+ iw) = u, Im(u+ iw) = w

the real and imaginary of u+ iw.
On VC, we have an additional operation that is not present on general complex vector spaces:
complex conjugate

VC → VC, v = Re(v) + iIm(v) 7→ v = Re(v)− iIm(v).

This has the same properties as complex conjugation on Cn:

v = v, v1 + v2 = v1 + v2, λv = λv

In particular, this operations defines a conjugate linear map, and elements of V is fixed under
complex conjugation.

1.13. Lemma: A complex subspace U ⊆ VC is of the form U = WC for a subspace W ⊆ V if
and only if it is invariant under complex conjugation, i.e.:

v ∈ U =⇒ v ∈ U.

Proof. Let u1, ..., uk be a basis of U , then

a1u1 + · · ·+ anun = 0

implies a1 = ... = an = 0, taking the complex conjugation of both side, since 0 = 0, we have that
u1, ..., un is basis since its linear independent of right dimension. Then U is spanned by u1, ..., uk
and u1, uk, hence it is also spanned by Re(v1),...,Re(vk),Im(v1),...,Im(vn). Letting W =⊆ be the
real subspace spanned by these vectors, it follows that U = WC.

1.14. Proposition: If v1, ..., vn is a basis of a real vector space V , then v1, ..., vn is a basis of
VC, and dimV = dimVC.
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Proof. Let v1, ..., vn be a basis of V , given v ∈ VC, since Re(v) ∈ V and Im(v) ∈ V , we can write
Re(v) =

∑
k akvk and Im(v) =

∑
k bkvk, for ak, bk ∈ R, then

v =
∑
k

(ak + ibk)vk,

hence v1, ..., vn spans VC as a complex vector space. To show that the set of vectors is linear inde-
pendent, if

∑
k(ak + ibk)vk = 0, we can take the real and imaginary parts to obtain

∑
k akvk = 0

and
∑

bkvk = 0, and hence they are indeed independent. The second statements follows immedi-
ately.

1.15. Now we can define the complexification of an operator:

1.16. Definition: Given a linear operator T ∈ L(V,W ), we obtain a complex-linear operator
TC ∈ L(VC,WC) defined by

TCv = TRe(v) + iT Im(v).

1.17. Proposition:

• Complexification is linear in the sense that

(T1 + T2)C = (T1)C + (T2)C, (aT )C = aTC for a ∈ R.

• Complexification of the identity operator in on V is IC ∈ L(VC).

• Under composition of operators,

(ST )C = SCTC.

In particular, TC is an isomorphism if and only if T is an isomorphism, and in this case,
(TC)

−1 = (T−1)C.

1.18. Proposition: Suppose v1, ..., vn is a basis of V , and w1, ..., wn is a basis of W . If T has
matrix A ∈ Mm×n(R) in this basis. Then the matrix of TC is AC.

Proof. Trivial.

1.19. Remark:

• For T ∈ L(V ), the trace and determinant of TC are equal to those of T .

• For T ∈ L(V ), the characteristic and minimal polynomial of TC are the complexification of
those of T .

• For T ∈ L(V ),

dimnull((λI − TC)
k) = dimnull((λI − TC)

k)

for all λ ∈ C, k ∈ N.
• In particular, eigenvalues come in complex conjugate pairs, λ, λ, where they also have the
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1. Complexification

same geometric and algebraic multiplicity.

1.20. Proposition: Suppose V is a real vector space and T ∈ L(V ), λ ∈ R, then λ is an
eigenvalue of Tc if and only if λ is an eigenvalue of T .
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