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1. Intro to Abstract Algebra

Section 1. Intro to Abstract Algebra

1.1 Finite Set

1.1. Definition: A set is a collection of objects, viewed as an object itself. If it has a finite
number of element, we call this set a finite set. The cardinality of a set is a measure of its size,
denoted by

|S| where S ∈ N

1.2. Definition (Composition): The composition of f : X → Y , and g : Y → Z, is an
operation which produces another function h = g ◦ f . Two functions, f, g are only composable if
the codom(f) ⊆ dom(g)

1.3. Definition (Identity map): The identity map is a speical map on any set X, which
maps all members of x to the same element idX .

id : X → X

x 7−→ x

1.4. Remark: identity maps do not affect other maps when composed f ◦ Ix = f = Iy ◦ f

1.5. Definition (Category): A category is a collections that consists of objects, and mor-
phisms for each pair of objects, such that

• Any morphism must have domain and codomain which are objects.

• The morphisms can be composed associatively.

• For each object, there exist an identity morphism.

And the simplest category is the category of finite sets.

1.6. Definition: Given a set Y , a subset X of Y , denoted X ⊆ Y , is a set for which all elements
of X are in Y . The power set P(X) is the set consisting of all subsets of a set X.
If X1, X2 are subsets of Y

• X1 ∪X2 = {X ∈ Y : x ∈ X1 or x ∈ X2}
• X1 ∩X2 = {X ∈ Y : x ∈ X1 and x ∈ X2}

∪,∩ are binary operations on P(Y )

1.7. Remark: If f : Y → Z is a map and X ⊆ Y . We can create a new map f |x : X → Z
called the ”retriction of f to X”.
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1. Intro to Abstract Algebra

1.2 Classification of Finite Sets

1.8. Definition: A map f : X ⇒ is called:

• A map is injective when different input implies different output.
∀x, x′ ∈ X, f(x) = f(x′) ⇒ x = x′

• A map is surjective if every element of its codomain is mapped to by at least one element
in its domain.
∀y ∈ Y, ∃x ∈ X such that f(x) = y

• A map is bijective if it is both injective and surjective.

1.9. Definition: Let bij(X) be the set of bijections of a map. This set is more structured i.e.

• Bij(X) is eqiupped with a associative binary operation f, g ∈ Bij(X) ⇒ f ◦ g ∈ Bij(X).

• A distinguished element Ix.

• There exist an inverse for all elements.

1.10. Definition (image and pre-image): Given f : X → Y , let C ⊆ X,the image of C
under f is defined as

f(C) = {f(x)|x ∈ C}

Let D ⊆ Y , The preimage D under f is defined as

f−1(D) = {x ∈ X|f(x) ∈ D}

1.11. Remark: Given a map f : X → Y we obtain

(1). Imf ⊆ Y

(2). Partition of X into preimages of elements in Imf .

P = {f−1(y) | y ∈ Imf}

And more precisely, there is a map j : P → Imf which sends f−1 ∈ P 7−→ y ∈ Imf

We also obtain two other maps from f : X → Y :

(1). π : X → P , which sends x ∈ X to the preimage that it belongs to, this map is surjective as
x 7→ f−1(f(x)).

(2). i : Imf → Y , which maps y ∈ Imf to y ∈ Y . Also called the natural inclusion map for
Imf ⊆ Y . This map is injective.
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1. Intro to Abstract Algebra

1.12. Proposition: Any maps f : X → Y can be factorized into a composition of a surjective,
bijective, and injective map:

1.13. Remark (Explicit description of maps): Instead of drawing arrows, we encode a
map The standard set of n elements n = 0, 1, 2, ... is Bn = {1, 2, ..., n}
For a map f : Bm → Bn, we encode it as a binary matrix as follows:

1.14. Remark (Graphs): Given sets X1, X2, . . . , Xk, their cartesian product is a new set
defined by

k∏
i=1

Xi = {(x1, x2, . . . , xk) : xi ∈ Xi∀i}

The graph of a map f : X → Y is the subset of X × Y defined by

Γf = {(x, y) ∈ X × Y : y = f(x)}
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1. Intro to Abstract Algebra

1.15. Definition (Classification of maps): A labeling of a finite set X with cardinality n
is a bijection

β : X → Bn = {1, 2, ..., n}

Let f, g be maps Bm → Bn. We say f, g are ”similar”, and write f ∼ g when we can relabel the
domain and codomain such that β ◦ f ◦ α−1 = g

1.16. Definition (equivalence relation): A binary relation on a set S is said to be an
equivalence relation if and only if:

(1). Reflexive: x ∼ x,∀x ∈ S

(2). Symmetric: x ∼ y ⇔ y ∼ x

(3). Transitive: x ∼ yandy ∼ z ⇒ x ∼ z

The similarity of maps is an exmaple of an equivalence relation.

1.17. Theorem: By relabeling domain and codomain, any map Bm → Bn is similar to one in
”standard form”:

1.18. Definition: Let f : X → X be a self-map. A Fixed Point is an element x ∈ X such that
f(x) = x
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1. Intro to Abstract Algebra

When classifying bijective self-maps, the strategy used for classifying f : X → Y is not
strict enough and will result in infomation being lost such as fixed points

To classfiy maps X → X, we should only allow relabeling of the points of X only once.

1.19. Definition (Cycle): A cycle for the self-map f : X → X is a subset S ⊆ X of the
form S = {x, f(x), f((x)), ...} (iteration of self-map applied to a point x)
Main result: We obtain a partition of X into cycles, (a cycle of length 1 is a fixed point)

1.20. Proposition: Any bijection f : X → X of a finite set is a product of disjoint cycles,
and every bijcetive self-maps can be classified knowing how many disjoint cycles there are of each
length.

1.21. Warning: This is only a classification for Bij(X)

1.3 Beyond Sets

Equipping sets with ”algebraic structure”, often called an ”operation”, which we require to
satisfy certain axioms.

1.22. Definition (Operations on a non-empty set):

• 0-ary operation: ∗ : {e} → A

• Unary operation: ∗ : A → A

• binary operation: ∗ : A×A → A

• ternary operation: ∗ : A×A×A → A

1.23. Definition (Magma): (A, ∗) A set with a binary opertaion, no laws.

1.24. Definition (Semigroup): (A, ∗) A magma s.t. ∗ satisfies associativity.
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1. Intro to Abstract Algebra

1.25. Definition (Monoid): (A, ∗, e) A semigroup with an identity element e ∈ A, s.t.
e ∗ a = a ∗ e = a,∀a ∈ A

1.26. Definition (Group): (G, ∗, e, i) A monoid with an additional unary operation
i : G → G where i is the inversion operation(denoted g−1).
When ∗ in a group satisfies the additional commutativity axiom, a ∗ b = b ∗ a,∀a, b,∈ G, we say
the group is commutative/abelian. Cyclic groups/modular arithmatic are infinite family of abelian
groups.

1.27. Remark: When we start with a set X and use an equivalence relation ’∼’ to produce a
set of eqiuvalence classes, this is called ”taking a quotient”, or quotient set. An example of this is
[Z]n, or cyclic groups

1.28. Definition (Rings): ((R,+, ◦, i), ·, 1) An abelian group with an additional associative
binary operation with an identity for the operation, as well as distributivity (compatibility between
the two binary operations).

1.29. Definition (Field): (F,+, 0, ·, 1) A field is a commutative ring such that every non-
zero element has a multiplicative inverse.
A sub-field of a field F is a subset S ⊂ F such that it contains 0 and 1, is closed under addition
and multiplication, and have additive and multiplicative inverses.

7



2. Linear Algebra

Section 2. Linear Algebra

2.1 Vector Spaces

2.1. Definition (Vector Spaces): Fix a field F , a vector space V over F is a set V with
an Abelian group stucture and an additional binary operation between an element in F and an
element in V , which we refer to as scalar multiplication

(1). (a ·F b) ·s v = a ·s (b ·s v)
(2). a ·s (u+v v) = (a ·s u) +v (a ·s v)
(3). (a+F b) ·s v = (a ·s v) +v (b ·s v)
(4). 1F ·s v = v

2.2. Remark (Polynomials): Let F be any field, V = P(F) = a0 + a1x+ ...+ anx
n : ai ∈ F.

This is a vector space called ”polynomials in one variable x with coefficients in F”.
Warning:

• Multiplication of polynomials is not part of the vector space structure.

• Polynomials should not always be viewed as functions, as the map from P(F) to the set of
functions F → F is not injective.
Ex.

F = Z2 p = x+ x2 (1.1)

0 7−→ 0 (1.2)

1 7−→ 0 (1.3)

x+ x2 and the zero polynomial define the same function.
Note however if F = R, it is injective.

2.3. Definition (Function Spaces): Let X be a set and F a field.
The vector space V = Fx = {f : X → F} are all functions on X with values in F . Its defined as:

∀f1, f2 ∈ Fx (f1 +v f2) : x ∈ X 7→ f1(x) +F f2(x) ∈ F
(λ ·s f) : x ∈ X 7→ λ ·F f(x)

0v : x ∈ X 7→ 0 ∈ F

2.4. Definition: Let U, V be vectors spaces over the field F. A linear map L : U → V is a
map (morphism) between the sets preserving the structure.
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2. Linear Algebra

2.5. Definition (Sum):

(1). A sum u1 + u2 = {u1 + u2 : u1 ∈ U1 and u2 ∈ U2}
(2). A sum u1+u2 of subspaces if called direct if any vector v ∈ u1+u2 has a unique expression

as v = u1 + u2, u1 ∈ U1 u2 ∈ U2. We write u1
⊕

u2
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2. Linear Algebra

2.2 Terminologies

2.6. Definition: A inear subspace of V is a subset U ⊆ V which inherits the vector space
structure form V , i.e.

• 0v ∈ U

• u1, u2 ∈ U =⇒ u1 +v u2 ∈ U

• λ ∈ F, u ∈ U =⇒ λ ·v u ∈ U

2.7. Definition (span): The span of the list of vectors v1, ..., vn is the linear combinations of
the vectors:

span(v1, ..., vn) = {λ1v1 + ...+ λnvn : (λ1, ..., λn) ∈ Fn}

2.8. Remark: If (v1, ..., vk) is a list of vectors in V.

Span(v1, ...vk) = {λ1v1 + λ2v2 + ...+ λkvk : λ1, ..., λk ∈ F}

= span(v1) + span(v2) + ...+ span(vk)

2.9. Definition (Linear dependence): A list of vectors (v1, ..., vk) is linearly dependent
when it is non-empty and there exists a1, ..., an ∈ F, not all zero, such that

a1v1 + a2v2 + ...+ anvn = 0

We call this ”a non-trivial linera combination equal to zero”.
Otherwise, the list is linearly independent.

2.10. Theorem: Let (v1, ..., vn) is a list of non-zero vectors. Then (v1, ..., vn) is linearly
independent ⇔ span(v1) + ...+ span(vn) is direct.

Proof. ⇒ Assume (v1, ..., vn) is linearly independent. Then

a1v1 + ...+ anvn = 0 =⇒ a1 = ... = an = 0

Suppose span(v1) + ...+ span(vn) is not direct, then by definition.

∃v = u1 + ...+ un = w1 + ...+ wn

where ui, wi ∈ span(vi) and uk ̸= wk for some k.

0 = v − v = (u1 − w1) + ...+ (uk − wk) + ...+ (un − wn)

= λ1v1 + ...+ λkvk + ...λnvn

where λk ̸= 0. We reach a contradiction as we assumed linear independence, and therefore
span(v1) + ...+ span(vn) is direct.
⇐ Assume span(v1) + ...+ span(vn) is direct. Then

0 ∈ span(v1) + ...+ span(vn)
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2. Linear Algebra

0 = 0 + ...+ 0

0 = a1v1 + ...+ anvn

By definition of direct sum, ∀i aivi = 0 =⇒ ai = 0 since no vi = 0

2.11. Definition: A vector space V is Finite Dimensional when it is spanned by a finite list
of vectors. V = Span(v1, ..., vn), otherwise V is infinite dimensional.

2.12. Definition: A basis for V is a linearly independent list which spans V . If V is finite-
dimensional, dim V is the length of a basis for V .

2.13. Lemma: If (v1, ..., vn) is a linearly dependent, then 1), ∃vj in the span of previous vectors
in the list and 2), we may remove vj without affecting the span.

Proof. 1) (v1, ..., vn) is linearly dependent implies ∃(a1, ..., an) ̸= (0, ..., 0) such that

a1v1 + ...+ anvn = 0

Let ak be the last nonzero coefficient. Thus

vk = −a−1
k (a1v1, a2v2, ..., an−1vn−1)

2) Let A = span(v1, ..., vn), B = span(v1, ..., vk−1, vk+1, ..., vn). We want to show A ⊆ B and
B ⊆ A.
B ⊆ A: obvious since (v1, ..., vk−1, vk+1, ..., vn) is a sublist of (v1, ..., vn)
A ⊆ B: Let v ∈ A, then v = λ1v1+ ...+λkvk + ...+λnvn, but vk = −a−1

k (a1v1+ ...+ ak−1vk−1), so

v = λ1v1 + ...+ λk−1vk−1 + λk(−a−1
k (a1v1 + ...+ ak−1vk−1)) + λk+1vk+1 + ...+ λnvn

= (λ1 −
λka1
ak

)v1 + ...+ (λk−1 −
λkak−1

ak
)vk−1 + λk+1vk+1 + ...+ λnvn) ∈ B

2.14. Theorem: Length of linear independent list of vectors ≤ length of spanning list.

Proof. Let (u1, ..., um) be linearly independent, let (w1, ..., wn) span V . Want to show m ≤ n.
Algorithm:
We start with the spanning list (w1, ..., wn) and we adjoin u1: (u1, w1, ..., wn). Since u1 ∈ span(w1, ..., wn),
list is linearly dependent and by the Lemma above, ∃wj ∈ span(u1, w1, ..., wj−1), and we eliminate
wj . As a result, (u1, ..., wj−1, wj+1, ..., wn) still spans and has the same length n.
We continue and add (u2): (u1, u2, w1, ..., wj−1, wj+1, ..., wn), and we can eliminate another w using
Lemma, this removed element cannot be a u since (u1, ..., un) is linearly independent.
In this way we can match each ui with a unique wj which implies m ≤ n.
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2. Linear Algebra

2.15. Theorem: If V is finite dimensional, then it has a basis.

Proof. Since V is finite dimensional, there exist a spanning list (v1, ..., vn).
We try to prune this list:

• If v1 = 0, delete.

• Else, move to v2:

– If v2 ∈ span(v1), delete v2
– If not, move to v3

• continue for n steps.

In this way, we produce a new list that still spans V , but there doesn’t a vk such that it is in the
span of previous vectors which implies that it is linear independent. Thus a basis.

2.16. Definition: If V is finite dimensional, dimV = length of basis.

2.17. Remark (Fitting Curves to Data): Suppose we have a complicated dataset, and
try to measure quantity ci at point ai. It is possible to find a polynomial that fits the data perfectly.

dk(x) =
(x− a0)(x− a1) · · · (x− ak−1)(x− ak+1) · · · (x− an)

(ak − a0)(ak − a1) · · · (ak − ak−1)(ak − ak+1) · · · (ak − an)
)

This serves as an indicator function, as

dk(ai) =

{
0 i ̸= k

1 i = k
i = 1, ..., n

So if

f = c0d0 + c1d1 + ...+ cndn

This captures the data exactly. We call this Lagrange Interpolation.
Notice: (d0, d1, ..., dn) is another basis for Pn(R).

Proof. Suppose we have a linear relation λ0d0+ ...+λndn = 0. We want to show λ0 = ... = λn = 0.
If we evaluate relation at x = a0 then this implies λ0 · 1 = 0. At x = a1 =⇒ λ1 · 1 = 0. Therefore,
evaluating x = an and we get λ0 = ... = λn = 0 and it is linearly independent.
We also have to show that it spans Pn(R). For any p ∈ Pn(R), it can be expressed as a linear com-
bination of the indicator functions, where the coefficients are just the evaluation of the polynomial
at those points. So

p =

n∑
i=0

p(ai)di

We can verify this by noticing that (d0, ..., dn) has the same length as the standard basis and is
linear independent, which implies it spans.
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2. Linear Algebra

2.3 Gaussian Elimination

2.18. Definition (Gaussian Elimination): Input: A list of vectors (v1, ..., vk) in V as k×n
matrix of aij ∈ F with respect to a basis (e1, ..., en) of V
Output:
A list of vectors (w1, ..., wk) that is more organized such that its matrix relative to the same basis,
is in ”Row Echelon Form”.

Or even more simplified, ”Reduced Row Echelon Form”

With Gaussian Elimination, we can:

• answer whether it is linear independent

• find the dimension of span(v1, ..., vk)

• find a basis for span(v1, ..., vk)

• compare spans of two list

• solve linear systems.

2.19. Definition (Elementary Row operations):

• switching: exchange two rows(v1, ..., vi, ..., vj , ..., vk)
Ri⇔Rj7−−−−→ (v1, ..., vj , ..., vi, ...vk)

• scaling by λ ̸= 0: (v1, ..., vi, ..., vk)
Ri→λRi7−−−−−→ (v1, ..., λvj , ...vk)

• shearing by λ ∈ F: (v1, ..., vi, ..., vj , ..., vk)
Ri→Ri+λRj7−−−−−−−−→ (v1, ..., vi + λvj , ..., vj , ...vk)

Each of these operations are reversible and does not change the span of the list. But they change
the list and the matrix representing it.
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2. Linear Algebra

2.20. Algorithm (Row Echelon Form): ”Forward pass”

(1). Step 1.

• Find the row with the earliest non-zero entry aei and switch it with the first row

• Scale new first row by a−1
ei

• For any row with nonzero ith entry, use first row to shear it such that the ith entry
becomes 0, i.e. vm 7→ vm − ami(v1)

(2). Step 2: repeat for (v2, ..., vk)

(3). Continue and after k steps we will arrive at RE form.

2.21. Algorithm (Reduced Row Echelon Form): ”Backward pass”
Let (v1, ..., vk) be in RE form, we start at the end of the list

(1). Let e be the echelon position for vk, use vk to shear v1, ..., vk−1 so that these rows all have 0
in eth position.

(2). We do the same with vk−1 and shear v1, ..., vk−2

Repeat this for k steps to arrive at RRE form.

2.22. Remark (Result of GE): Nonzero rows are obviously linearly independent. Zero rows
indicate redundencies in original list. The nonzero rows is a basis for the original list of
vectors.

2.23. Example: Suppose we have

v1 = ae1 + be2

v2 = ce1 + de2

Under what condition is (v1, v2) lineraly independent?

We can put this list of vectors as a matrix.

[
a b
c d

]
Putting it into RE form, the possibilities are:(

1 ∗
0 1

)
,

(
1 ∗
0 0

)
,

(
0 1
0 0

)
,

(
0 0
0 0

)
Now it is clear that the last 3 possibilities are not linearly independent. So we focus on the first
RE form.

Case 1: If a ̸= 0 [
a b
c d

]
R1→a−1R1−−−−−−−→

(
1 a−1b
c d

)
R2→R2−c·R1−−−−−−−−→

(
1 a−1b
0 d− ca−1b

)

14



2. Linear Algebra

We also need d− ca−1b ̸= 0 so we can divide by it(
1 a−1b
0 d− ca−1b

)
R2→(d−ca−1b)−1R2−−−−−−−−−−−−−→

(
1 a−1b
0 1

)
Since a ̸= 0 we need d− ca−1b ̸= 0 =⇒ ad− bc ̸= 0.

Case 2: a = 0, then we need c ̸= 0[
a b
c d

]
R1⇔R2−−−−−→

(
c d
a b

)
R1→c−1R1−−−−−−−→

(
1 c−1d b− ac−1d

)
Similarly we require b− ac−1d ̸= 0 so(

1 c−1d
0 b− ac−1d

)
R2→(b−ac−1d)−1R2−−−−−−−−−−−−−→

(
1 c−1d
0 1

)
So we need a ̸= 0 and ad− bc ̸= 0, or a = 0 and c ̸= 0 and ad− bc ̸= 0.
However, notice that a = 0 and ad − bc ̸= 0 =⇒ c ̸= 0, so we can omit that condition. Now the
requirement becomes ad− bc ̸= 0 in both cases, in other words, we just need ad− bc ̸= 0.

2.24. Definition (Determinant): From the example above, we see ad − bc determines

whether

(
a b
c d

)
represents a linearly independent list or not. Because this expression determines

the linear independence, we call this the determinant of

(
a b
c d

)
. Usually written as det(

(
a b
c d

)
),

or |
(
a b
c d

)
|

2.25. Remark: With GE, we can solve systems of linear equations.
When dealing with a homogenous case, x = 0 is always a solution, and the set of solutions is always
a linear subspace, since fi(x) = 0 and fi(y) = 0 =⇒ fi(x+ y) = fi(x) + fi(y) = 0 + 0 = 0
So ideally, we should provide a basis for the space of solutions. Then a ny solution is a linear
combination of the basis.

Duality

2.26. Definition (Linear Functional): A linear functional on V is a linear map from V to
F , aka. an element of L(V, F )

2.27. Definition (Dual Space): The dual space of V , denoted V ∗, is the vector space of
all linear functional on V , aka. V ∗ = L(V, F )

15



2. Linear Algebra

2.28. Remark: Besides linear functions, we also have:

• Constant functions f : V → F. It is not linear unless f = 0 but all constant functions together
is a vector space, which is just the field F.

• Affine-linear functions: the space of affine-linear functions is V ∗ ⊕ F

Result: given a list of functions to solve, we can view them as a list of vectors and apply GE to
this list.

2.29. Remark: If we know values of f ∈ V ∗ on a basis β, we know f completely.
If (f(e1) = b1, ..., f(en) = bn), then f(v = a1e1 + ...+ anen) = a1f(e1) + ...+ anf(en) = a1b1 + ...+
anvn.

2.30. Definition (Dual basis): If β = (e1, ..., en) is a basis for V , we can use it to produce a
dual basis for V ∗. We use the same strategy as Lagrange Interpolation and define β∗ = (e∗1, ..., e

∗
n)

to be: e∗i = the linear function taking value 1 on ei, 0 on ej ̸=i.
Thus for f ∈ V ∗, f = f(e1)e

∗
1 + ...+ f(en)e

∗
n
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