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Chapter 1. Maps

MAT137 solely focused on maps from R → R, and now we will begin the study of MAT237 with
the characteristics of maps from R𝑛 → R𝑚 . There are many ways of referring to them but all of
these defines a function

f : 𝐴→ 𝐵, 𝐴 ⊆ R𝑛 , 𝐵 ⊆ R𝑚

This section will refrain from being too rigour as we try to build intuitions and explore examples
of multivariable functions.

1.1 Notations

In this course, we will be discussing real-value functions from R and also vector-valued R𝑛 . To
help keep track of these objects, we will use different set of letters:

• lowercase Latin and Greek letters near the start of the alphabet 𝑎, 𝑏, 𝑐, 𝑟, 𝛼, 𝛽, 𝛿, 𝜖 for real
numbers;

• lower Latin near the end and other Greek letters 𝑡, 𝑢, 𝑣,𝑤, 𝑥, 𝑦, 𝑧, 𝜑,𝜓,𝜃 for variables;

• bold lowercase Latin a, b, n, u, v, x, y for vectors;

• upper or lowercase Latin letters 𝑓 , 𝑔, ℎ, 𝐹,𝐺 for real valued functions;

• vector arrow notation or 𝛾 for vector valued functions.

1.2 Curves

Maps of the form
R → R𝑛

are sometimes called vector-valued functions of a real variable, especially for 𝑛 ≥ 2, but more
often they are referred to as parametric curves as that is what they describe physically.

Definition 1.2.1 A parametric curve

R → R𝑛

is the graph of the collections of points ( 𝑓1, ..., 𝑓𝑛), obtained from the set of 𝑛
continuous functions of a parameter 𝑡 (often time) on an interval 𝐼

𝑓1 = 𝑓1(𝑡), · · · , 𝑓𝑛 = 𝑓𝑛(𝑡)

these functions are the parametric equations.

For maps from R → R, we plot both the input and the output simultaneously. However, for
parametric curves, we only care about the output, hence a map from R → R𝑛 can be illustrated by
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1.2. Curves

an 𝑛 dimensional graph.

Intuition: There are many benefits as to why we use parametric equations as opposed to our usual
Cartesian or Polar form, some of them are:

• Allows us to graph curves that are not functions like the unit circle.
• Provides us more information with the use of the ’parameter’, such as direction and speed

with respect to it (usually time).
• More often than not it is easier to differentiate and integrate a curve using its parametric

equations.

Example 1.2.2 Define the map 𝛾 : [0, 2𝜋] → R2 as 𝛾(𝑡) = (cos(𝑡), sin(𝑡)). The image
of 𝛾 is the unit circle in R2, namely the set 𝛾([0, 2𝜋]) = {(𝑥, 𝑦) ∈ R2 : 𝑥2+2 = 1}.

Watch this to see how the path is drawn over time.

Example 1.2.3 Define the map 𝛾2 : [0,∞] → R3 as 𝛾2(𝑡) = (cos(𝑡), sin(𝑡), 𝑡). The
image of 𝛾 is a helix, where as time increases, the helix is traced out in an upward
fashion. Watch this to see how the path is drawn over time.

Example 1.2.4 Let 𝑝, 𝑞 ∈ R𝑛 . A straight line path 𝛾 : [0, 1] → R𝑛 from point
𝑝 to point 𝑞 is defined by 𝛾(𝑡) = (1 − 𝑡)𝑝 + 𝑡𝑞. You can also view this formula
𝛾(𝑡) = 𝑝 + 𝑡(𝑞 − 𝑝).

1.2.1 Motion

Physically, a parametric curve 𝛾 : 𝐼 → R𝑛 describes the motion of an object moving in R𝑛 in the
interval 𝐼 ⊆ R. The position at time 𝑡 is clearly 𝛾(𝑡). Well, what is its velocity at 𝑡? From MAT137,
the natural suggestion should be the velocity at time 𝑡 is given by

𝛾′(𝑡) = lim
ℎ→0

𝛾(𝑡 + ℎ) − 𝛾(𝑡)
ℎ

,

3

https://www.math3d.org/sVnIQ7bt
https://www.math3d.org/LMNklUqM


Chapter 1. Maps

however ℎ is scalar whereas 𝛾(𝑡+ℎ)−𝛾(𝑡)
ℎ

is a vector! We have only seen limits of scalar quantities
with scalar limit variables, so the above notion of a limit is not exactly as the case in MAT137. We
will formally study these later but the above guess is a good try.

Example 1.2.5 An object in 3-dimensional space is moving along the path described
by

®𝑔(𝑡) =
(
2𝑡 − 6, 5(𝑡 − 3)2, 1

2 𝑡
2 − 4

)
.

Despite not knowing the exact notion of a limit of a vector, we can still analyze
the velocity and speed of ®𝑔′(3) using the tradition limit definition. Similar to the
one-dimensional case, it is simply the change in position over a shorter and shorter
interval, here we will use [3, 3+ ℎ]. Using a table of values, notice how the average
velocities and average speeds approach a specific vector and scalar respectively as
ℎ → 0.

ℎ
®𝑔(3+ℎ)−®𝑔(3)

ℎ




 ®𝑔(3+ℎ)−®𝑔(3)
ℎ





1 (2, 5, 3.5) 6.42

0.1 (2, 0.5, 3.05) 3.68
0.01 (2, 0.05, 3.005) 3.61
0.001 (2, 0.005, 3.0005) 3.61
0.0001 (2, 0.00005, 3.00005) 3.60

We might guess that ®𝑔′(3) ≈ (2, 0, 3) and | | ®𝑔′(3)| | ≈ 3.60. This limiting process also
has a nice geometric representation.

For an linear map 𝛾 : R → R𝑛 , we can write 𝛾(𝑡) = (𝛾1(𝑡), ..., 𝛾𝑛(𝑡)) where each 𝛾𝑖 : R → R

are single variable functions which we call the component functions of 𝛾, and we can then tools
we know to compute their derivatives 𝛾′

𝑖
(𝑡). This reduction to single variable calculus will be a

recurring theme through multivariable calculus. And as we will later see, the derivative of 𝛾 can
be written as:

𝛾′(𝑡) = (𝛾′
1(𝑡), ..., 𝛾

′
𝑛(𝑡)).

Recall from the last example where we’ve seen that the instantaneous speed of the object at time
𝑡 is the magnitude of the instantaneous velocity | |𝛾′(𝑡)| |, which is given by

| |𝛾′(𝑡)| | =
√
𝛾′

1(𝑡)2 + · · · + 𝛾′
𝑛(𝑡)2.

Since it is often useful to consider just the direction of the motion at some time 𝑡 without its
magnitude, this leads to a definition of a special unit vector which is in the direction of motion.

4
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1.2. Curves

Definition 1.2.6 The unit tangent vector, denoted ®𝑇 = ®𝑇(𝑡) is the unit vector in the
direction of 𝛾′(𝑡):

®𝑇(𝑡) = 𝛾′(𝑡)
| |𝛾′(𝑡)| | .

Example 1.2.7 Referring to example 1.2.5, we can now explicitly compute the
velocity by calculating the derivative of each component function:

𝛾′(𝑡) =
(
𝑑

𝑑𝑡
(2𝑡 − 6), 5 𝑑

𝑑𝑡
(𝑡 − 3)2, 𝑑

𝑑𝑡

(
1
2 𝑡

2 − 4
))

= (2, 10(𝑡 − 3), 𝑡).

Hence the velocity at 𝑡 = 3 is given by 𝛾′(3) = (2, 0, 3) and speed | |𝛾′(3)| | =
√
(13) ≈

3.60 which matches our guesses. The direction of motion at 𝛾(3) is given by the
unit tangent vector:

𝑇(3) = 1√
(13)

(2, 0, 3).

We might’ve also guessed that the acceleration of the objection is the instantaneous change in
velocity which is the second derivative, so

𝛾′′(𝑡) = lim
ℎ→0

𝛾′(𝑡 + ℎ) − 𝛾′(𝑡)
ℎ

= (𝛾′′
1 (𝑡), .., 𝛾

′′
𝑛 (𝑡)).

Example 1.2.8 One of the applications of parametric curves is trajectory. Suppose
we throw a ball as far as we can, what trajectory does it follow? Let

𝛾 : [0,∞) → R3

describe the trajectory of this ball, and say at 𝑡 = 0, our initial velocity is 𝛾′(0) =
(𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧) from the origin. Assuming the only force acting on the ball is the
downwards acceleration due to gravity, we might guess that its velocity is given by

𝛾′(𝑡) = (𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧 − 𝑔𝑡)

where 𝑔 = 9.81𝑚/𝑠2. Since 𝛾′(𝑡) is the derivative of 𝛾(𝑡) we might as well write

𝛾(𝑡) =
∫ 𝑡

0
𝛾′(𝑢)𝑑𝑢,

but wait, 𝛾′ outputs a vector! However due to the purpose of this chapter, we will
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Chapter 1. Maps

ignore rigour for now and assume that integrating over a vector means integrating
over each of its components. Then

𝛾(𝑡) =
∫ 𝑡

0
𝛾′(𝑢)𝑑𝑢 =

(∫ 𝑡

0
𝑣𝑥𝑑𝑢,

∫ 𝑡

0
𝑣𝑦𝑑𝑢,

∫ 𝑡

0
(𝑣𝑧 − 𝑔𝑢)𝑑𝑢

)
=

(
𝑣𝑥𝑡, 𝑣𝑦𝑡, 𝑣𝑧𝑡 −

1
2 𝑔𝑡

2
)

.

These are the classic kinematics equations for projectile motion in three dimensions!
Play with this demo to test out our new expressions!

1.2.2 Frenet frame in three dimensions

Often times, it is very important to be able to describe the motion of an object relative to its frame. As
we’ve seen, the direction of motion is given by the unit tangent vector ®𝑇. But how is the direction
of motion changing? Naturally we want to compute the derivative ®𝑇′(𝑡).

Definition 1.2.9 Given a differentiable vector valued function 𝛾 and its unit tangent
vector ®𝑇, the principal unit normal, denoted ®𝑁(𝑡), is given by

®𝑁(𝑡) = 𝑇′(𝑡)
| |𝑇′(𝑡)| | .

As the name suggest, the principal unit normal is perpendicular to the unit tangent. This may
come as somewhat of a surprise, but it is important to understand why so.

Remark 1.2.10 Algebraically, using the product rule for dot product, which states
for two vectors ®𝑥, ®𝑦

(®𝑥 · ®𝑦)′ = ®𝑥 · ®𝑦′ + ®𝑥′ · ®𝑦

and the fact that | | ®𝑇 | | = 1, we get

𝑑

𝑑𝑡
( ®𝑇 · ®𝑇) = 𝑑

𝑑𝑡
(1) =⇒ 2( ®𝑇 · ®𝑇′) = 0

which mean ®𝑇 is orthogonal to its derivative. However personally, I think it is
better to understand it geometrically. Since ®𝑇 has constant magnitude, lets of its
as an object rotating on a circle around the origin where we are trying to find
its instantaneous velocity, aka the derivative at that point. Using the formula for
average velocity over some interval of time, we would get a secant vector, but as
we shorten that interval more and more (taking a limit), that secant vector gets
so small that it is close to being a vector tangent to the circle. And of course, the
tangent to the circle is always perpendicular to the position vector at that point,
and hence we see why ®𝑁 is orthogonal to ®𝑇

6
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1.2. Curves

Example 1.2.11 Define 𝛾 : R → R3 as 𝛾(𝑡) = (cos(𝑡), sin(𝑡), 𝑡) for all 𝑡 ∈ R. We can
compute 𝛾′, 𝛾′′, ®𝑇, and ®𝑁 . Its derivative is calculated by taking each component
function’s derivative:

𝛾′(𝑡) =
(
𝑑

𝑑𝑡
cos(𝑡), 𝑑

𝑑𝑡
sin(𝑡), 𝑑

𝑑𝑡
𝑡

)
= (− sin(𝑡), cos(𝑡), 1)

Similarly to the first derivative, to find 𝛾′′(𝑡), take the derivative of each component
of 𝛾′(𝑡) :

𝛾′′(𝑡) =
(
− 𝑑

𝑑𝑡
sin(𝑡), 𝑑

𝑑𝑡
cos(𝑡), 𝑑

𝑑𝑡
1
)
= (− cos(𝑡),− sin(𝑡), 0)

Since ∥𝛾′(𝑡)∥ =
√

sin2(𝑡) + cos2(𝑡) + 1 =
√

2, it follows that

𝑇(𝑡) = 𝛾′(𝑡)
∥𝛾′(𝑡)∥ =

1√
2
(− sin(𝑡), cos(𝑡), 1)

in which case

𝑇′(𝑡) = 1√
2
(− cos(𝑡),− sin(𝑡), 0)

As ∥𝑇′∥ = 1√
2
, we see that 𝑁 is given by

𝑁(𝑡) = 𝑇′(𝑡)
∥𝑇′(𝑡)∥ =

√
2√
2
(− cos(𝑡),− sin(𝑡), 0) = (− cos(𝑡),− sin(𝑡), 0).

Below is an illustration of how the unit normal is oriented on the curve traced by
𝛾(𝑡).
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Chapter 1. Maps

Remark 1.2.12 Note 𝛾′(𝑡) is always a scalar multiple of ®𝑇(𝑡), however 𝛾′′(𝑡) is not
necessarily a scalar multiple of ®𝑁(𝑡). The above example where 𝛾′′(𝑡) was indeed
a scalar multiple of ®𝑁(𝑡) is just a coincidence because | |𝛾′(𝑡) was just a scalar and
not a function of 𝑡.

The unit tangent and unit normal span a two-dimensional plane, so these cannot be enough to
represent all kinds of motion in R3. Since ®𝑇 and ®𝑁 are already orthogonal unit vectors, we can
choose another unit vector ®𝐵 which is orthogonal to both of them. However, both ®𝐵 and −®𝐵 will
satisfy the requirement. To remove this ambiguity, we defined a vector called the bi normal unit
vector.

Definition 1.2.13 The binormal unit vector ®𝐵 is the unique unit vector such that
{ ®𝑇, ®𝑁 , ®𝐵} form a positively-orienteda ordered orthogonal basis in R3, which means
this set of vectors satisfies the right hand rule.

aA basis 𝑢, 𝑣,𝑤 in R3 is positively oriented if (𝑢 × 𝑣) ·𝑤 > 0.

This ordered basis { ®𝑇, ®𝑁 , ®𝐵} forms the Frenet frame, or TNB frame which described the motion
of an object in three dimensions.

Example 1.2.14 Continuing with Example 1.2.11, recall we have already calculated
the unit tangent ®𝑇 and the unit normal ®𝑁 for the path 𝛾(𝑡) = (cos(𝑡), sin(𝑡), 𝑡). To
find ®𝐵 algebraically, we use the cross product

®𝐵 = ®𝑇 × ®𝑁 .

The cross product 𝑎 × 𝑏 of two vectors 𝑎 = (𝑎1, 𝑎2, 𝑎3) and 𝑏 = (𝑏1, 𝑏2, 𝑏3) can be
calculated by expressing it as a "determinant". That is, if {𝑒1, 𝑒2, 𝑒3} is the standard
basis in R3, then

𝑎 × 𝑏 = det

𝑒1 𝑒2 𝑒3
𝑎1 𝑎2 𝑎3
𝑏1 𝑏2 𝑏3


This is not really a determinant (since 𝑒1, 𝑒2, 𝑒3 are vectors), but by naively following
the rules of calculating determinants, we will end up with the correct expression.
For this example:

8



1.2. Curves

®𝐵 = ®𝑇 × ®𝑁 =
1√
2

det


𝑒1 𝑒2 𝑒3
− sin(𝑡) cos(𝑡) 1
− cos(𝑡) − sin(𝑡) 0

 = 1√
2

sin(𝑡)𝑒1 −
1√
2

cos(𝑡)𝑒2 +
1√
2
𝑒3,

so ®𝐵(𝑡) = 1√
2
(sin 𝑡,− cos 𝑡, 1). View this demo of the TNB frame for 𝛾. The green

arrow is ®𝑇(𝑡), the red is ®𝑁(𝑡) and the orange is ®𝐵(𝑡). Notice how they remain
orthogonal to each other throughout the motion while being positively oriented.

1.2.3 Geometry of curves

We define the trace of a parametric curve 𝛾 as the image of 𝛾, notice that many different parametric
curves can have the same trace.

Example 1.2.15

• Define 𝛾1 : [0,𝜋] → R2 by 𝛾1(𝑡) = (cos(2𝑡), sin(2𝑡)). Then 𝛾1 traces the unit
circle twice as fast.

• Define 𝛾2 : [0, 2𝜋] → R2 by 𝛾2(𝑡) = (cos(𝑡 −𝜋), sin(𝑡)). Then 𝛾2 traces the unit
circle but starts at 𝜋 instead of 0 radians of rotation.

• Define 𝛾3 : [0, 6𝜋] → R2 by 𝛾3(𝑡) = (cos(𝑡),− sin(𝑡)). Then 𝛾3 traces the unit
circle three times in the opposite direction.

• Define 𝛾4 : [0, 14.1] → R2 by 𝛾4(𝑡) =
(
cos

(
𝑡
4 sin(𝑡)

)
, sin

(
𝑡
4 sin(𝑡)

) )
. Then 𝛾4

traces the unit circle in an...interesting way.

View this animation for a visual demonstration of the four parametric curves above.

Always remember that the trace of a parametric curve is simply a set, and we should not refer
to this set as a "curve". We will explore these issues much later on, but for now we can take the
following definition for granted.

Definition 1.2.16 Let 𝐶 ⊆ R𝑛 be a set. We say 𝐶 is a curve in R𝑛 if 𝐶 is the trace of
a continuous parametric curve 𝛾 : 𝐼 → R𝑛 .

Often times we might be concerned with the shape of 𝐶 but not how 𝐶 is traced out, for example,
how many times does 𝐶 cross itself? How curvy is 𝐶? In other words, we may want to study
curves 𝐶 without worrying how it is described. Hence we also ways to describe a curve without
directly using parametric curves.
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Chapter 1. Maps

Example 1.2.17 Define the set

𝐶 =
{
(𝑥, 𝑦) ∈ R2 : 𝑦 = 𝑥2,−2 ≤ 𝑥 ≤ 2

}
so 𝐶 describes the graph of the parabola 𝑦 = 𝑥2 on the domain [−2, 2]. Intuitively,
we would consider 𝐶 to be a curve and we can indeed quickly prove it. Define the
parametric curve 𝛾 : [−2, 2] → R2 as 𝛾(𝑡) =

(
𝑡, 𝑡2

)
which yields a trace 𝛾([−2, 2]) =

𝐶. Since 𝛾 is continuous and 𝛾([−2, 2]) = 𝐶, it follows that 𝐶 is a curve.

Hopefully this section provided a brief foray into the interesting applications of curves and whats
to come!

10
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1.3 Real-valued functions

In the previous section, we focused on maps of the form R → R𝑛 , this section is about maps of the
opposite form

R𝑛 → R.

We often refer to these maps as real-value functions.

1.3.1 Scalar fields and densities

In physics, real-valued functions are called scalar fields or scalar functions or potentials. Below
are many examples of real-value functions as it is important to know how to switch between formal
and informal languages.

Example 1.3.1 Meteorologists use temperature to help predict the weather as it can
allude to cloud formation and the movement of huge climate systems. Temperature
itself is a scalar value (measured in Celsius) and varies depending on where you
are on Earth. At any given moment, the temperature 𝑇(𝑥, 𝑦, 𝑧) depends on your
position (𝑥, 𝑦, 𝑧) on Earth. For example, suppose (𝑥𝐴, 𝑦𝐴, 𝑧𝐴) is a position in the
Arctic and (𝑥𝐷 , 𝑦𝐷 , 𝑧𝐷) is a position in the Sahara Desert. You might guess that
𝑇 (𝑥𝐴, 𝑦𝐴, 𝑧𝐴) < 𝑇 (𝑥𝐷 , 𝑦𝐷 , 𝑧𝐷) since the Sahara Desert is always much hotter than
the Arctic.

Example 1.3.2 Mass is never distributed uniformly among objects because there
are always more dense regions and less dense regions in a mass. For example,
a block of swiss cheese has regions where there is no mass (holes) and regions
where cheese is tightly packed. Since the density of the cheese depends on where
in the cheese you are looking then we can describe the density with a scalar field
𝜑 : 𝐶 → [0,∞) where 𝐶 ⊆ R3 is the set of points in the cheese. Our scalar field
𝜑(𝑥, 𝑦, 𝑧) outputs the density in units kg/m3 at (𝑥, 𝑦, 𝑧). For instance, suppose
𝑝 ∈ 𝐶 is a point inside a hole. Then one would expect 𝜑(𝑝) ≈ 0 kg/m3 as there’s no
mass in the hole.

Example 1.3.3 There are forces in physics that have a special connection with
potentials, namely conservative forces. For example, the electrostatic force for a
point charge is related to the scalar field 𝑉 : R3 → R defined by

𝑉(𝑥, 𝑦, 𝑧) = 𝑄

4𝜋𝜀0
√
𝑥2 + 𝑦2 + 𝑧2

.

11
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The function 𝑉 is often referred to as the electric potential where 𝜀0 is the permit-
tivity of free space constant and 𝑄 is the charge constant. As you will see much
later in vector calculus, this function can describe how the electrostatic forces of
two different charges influence each other as they move nearly.

Real-valued functions arise in many other fields of study as well.

Example 1.3.4 Economists and businesses strive to maximize profit or minimize
costs subject to many constraints. They must account for many parameters before
making decisions resulting in real-valued functions being highly important. For
example, suppose you are CEO of a company named CHAYR and must produce
20,000 chairs. The number of chairs they can produce is given by the Cobb-Douglas
function:

𝑃(𝐾, 𝐿) = 1
25𝐾

1/4𝐿1/3

where 𝐾 is their capital expenditure and 𝐿 is their labour costs. The total cost is
therefore 𝐶(𝐾, 𝐿) = 𝐾 + 𝐿. You must decide how to spend your money the mini-
mizes costs and still produces 20,000 chairs. In other words, you must minimize
𝐶(𝐾, 𝐿) subject to the constraint that 𝑃(𝐾, 𝐿) = 20, 000. You will learn how to solve
such multivariable optimization problems.

Example 1.3.5 A streaming site FLYX uses very complicated algorithms to find
content to recommend to you. Every movie or show you watch generates data
points that FLYX stores and uses to associate a rough categorization of the type
of viewer you are. An example of such a data point would be how many hours
you watched a specific genre/style. Then, before Netflix recommends you a movie
or show, it evaluates the data, represented in 𝑛 variables 𝑥1, . . . , 𝑥𝑛 , using some
function 𝐸 : R𝑛 → R that outputs a score 𝐸 (𝑥1, . . . , 𝑥𝑛). FLYX recommends the
shows with the highest scores because they believe you will enjoy the movie or
show. But how did FLYX create the magical real-valued function 𝐸 ? Real-valued
functions are very important for data analysis.

A special kind of real-valued functions are those that are non-negative, these are often referred
to as densities. Many densities are defined by counting a quantity and dividing by a unit of
measurement.

Example 1.3.6 Population density, the number of people per unit area, of a country
is valuable information for societal statistics as well as future development. Let

12
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𝐶 ⊆ R2 be the set of points in Canada (ideally we would need 3 variables, but
let’s assume 𝐶 is the set of points on a 2D map of Canada). If 𝜑 : 𝐶 → [0,∞) is
Canada’s population density function measured in persons per square kilometre,
then 𝜑(𝑥, 𝑦) should be approximately the number of people in a 1 km by 1 km
square centred at (𝑥, 𝑦). Below is a heatmap of 𝜑.

As one would expect, the GTA (Greater Toronto Area) is quite red implying high
population density because of the limited space and large number of people. North-
ern regions like Nunavut remain less shaded (low population density) due to the
large amount of land, but few inhabitants.

1.3.2 Graphs, level sets, and slices

There are a few ways to visualize a multivariable function which are all defined as sets in R𝑛 . The
most basic one is a graph.

Definition 1.3.7 Let 𝐴 ⊆ R𝑛 . The graph of a function 𝑓 : 𝐴→ R is the set in R𝑛+1

given by
{(𝑥, 𝑓 (𝑥)) : 𝑥 ∈ 𝐴}.

The graphs of function 𝑓 : R → R have been taught to us in high school and it lies in R2. For a
two-variable real-valued function, its graph is also called a surface plot.

Example 1.3.8 Define 𝑓 : R2 → R by 𝑓 (𝑥, 𝑦) = 𝑥2 + 𝑦2. The graph of 𝑓 is the set
{(𝑥, 𝑦, 𝑥2 + 𝑦2) : (𝑥, 𝑦) ∈ R2}, as plotted below.

13
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However, we cannot visualize any real-valued functions whose input space is greater or equal to
three-dimension, as we cannot directly visualize four-dimensional space. So it is often helpful to
"reduce dimensions". There are several ways of doing so.

Definition 1.3.9 Let 𝐴 ⊆ R𝑛 and 𝑓 : 𝐴 → R be a real-valued function. Fix 𝑘 ∈ R.
The level set of 𝑓 at 𝑘 is the set {𝑥 ∈ R𝑛 : 𝑓 (𝑥) = 𝑘}. This is also referred to as the
k-level set.

Remark 1.3.10 A level set in R2 is also called a contour, and for graph of 2-variable
functions, we can create a contour plot by plotting the level sets for many different
values.

Example 1.3.11 Define the function 𝑓 : R2 → R as 𝑓 (𝑥, 𝑦) = 𝑥2 + 𝑦2. You can visual-
ize 𝑓 and its graph using only its level sets. Begin with the 1-level set, 0-level set and
(-1)-level set. By definition, the 1-level set of 𝑓 is the set

{
(𝑥, 𝑦) ∈ R2 : 𝑥2 + 𝑦2 = 1

}
,

which is the unit circle in R2. This single contour is plotted below.

The " 1 " indicates that for any (𝑥, 𝑦) on this contour, 𝑓 (𝑥, 𝑦) = 1. The 0-level
set is given by

{
(𝑥, 𝑦) ∈ R2 : 𝑥2 + 𝑦2 = 0

}
= {(0, 0)}, since only the origin satisfies

𝑥2 + 𝑦2 = 0. Hence, this contour is a single point. Any 𝑘-level set for 𝑘 < 0 contains
points in the set

{
(𝑥, 𝑦) ∈ R2 : 𝑥2 + 𝑦2 = 𝑘

}
= ∅, since there are no points (𝑥, 𝑦)

satisfying 𝑥2 + 𝑦2 < 0. By plotting a few more contours, you obtain a contour plot.

14
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How does this contour plot correspond to the graph of 𝑓 ? Imagine raising each
contour by their value out of the page. For example, the 0 point remains on the
page (the 𝑥𝑦-plane) and the 0.5 circle raises out of the page by 0.5. This recreates a
"skeleton" graph of 𝑓 , as illustrated below.

Play with this demo to see how the contours correspond to the graph of 𝑓 . Toggle
switches in order. Also, watch this demo to see how the 𝑘-level set relates to the
graph of 𝑓 as 𝑘 varies from -1 to 4 .

Example 1.3.12 Define the function 𝑓 (𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2 + 𝑧2. The graph of 𝑓 lies in
R4 so it cannot be plotted, but we can indeed plot its level sets as they lie in R3.
Notice that the 𝑘-level set of 𝑓 is just a sphere of radius

√
𝑘 for 𝑘 ≥ 0.

The innermost red sphere is the 1-level set, the middle blue sphere is the 4-level
set, and the outermost pink sphere is the 9-level set. Three-dimensional level sets
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may seem abstract and not that helpful at a glance; however, they can offer valuable
interpretations. For example, if 𝑓 describes the magnitude of force felt by a mass
at position (𝑥, 𝑦, 𝑧), then the 𝑘-level set describes all positions in three-dimensional
space that a mass would feel a force of 𝑘.

Another way of reducing dimensions we’ll talk about is to use a colour gradient that corresponds
to the values of the function 𝑓 , which are called heat maps. These are like a continuous version of
the contour plot.

Example 1.3.13 Suppose you are sitting in a 4 m by 4 m room with a window. The
sun radiates heat through the window increasing the temperature of the room. You
model the temperature in Celsius using the function 𝑇 : [0, 4]2 → [0,∞) defined as
𝑇(𝑥, 𝑦) = 0.25

(
𝑥2 − (𝑦 − 2)2

)
+ 20. The input, 𝑥 and 𝑦, are measured in meters and

describe your position in the room. To visualize 𝑇 on its domain, you can create a
heat map:

The highest temperature, indicated by the red, is in the vicinity of the window as
expected. You can see how this corresponds to the actual graph of 𝑇 :
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The last way we’ll talk about is slicing, which is achieved by fixing a variable. For 2-variable
functions:

Definition 1.3.14 Let 𝐴 ⊆ R2 and 𝑓 : 𝐴→ R be a real-valued function.

• For fixed 𝑎 ∈ R, the 𝑥-slice at 𝑎 of the graph of 𝑓 is the set

{(𝑦, 𝑧) ∈ R2 : (𝑎, 𝑦) ∈ 𝐴, 𝑧 = 𝑓 (𝑎, 𝑦)}.

• For fixed 𝐵 ∈ R, the 𝑦-slice at 𝐵 of the graph of 𝑓 is the set

{(𝑥, 𝑧) ∈ R2 : (𝑥, 𝑏) ∈ 𝐴, 𝑧 = 𝑓 (𝑥, 𝑏)}.

Example 1.3.15 Consider the graph of 𝑓 (𝑥, 𝑦) = 𝑥2 − 𝑦2. The 𝑥-slice at 𝑥 = −1 is the
set 𝐴 =

{
(𝑦, 𝑧) : 𝑧 = 1− 𝑦2} and the 𝑦-slice at 𝑦 = 0 is the set 𝐵 =

{
(𝑥, 𝑧) : 𝑧 = 𝑥2}.

Notice both 𝐴 and 𝐵 are sets in R2. These are plotted separately below.

And to visualize how these 2D slices correspond to the graph of 𝑓 :

You can play with this demo to view different slices.
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Similarly, we can define slices for 3-variable functions.

Definition 1.3.16 Let 𝐴 ⊆ R3 and 𝑓 : 𝐴→ R be a real-valued function.

• For fixed 𝑎 ∈ R, the 𝑥-slice at 𝑎 of the graph of 𝑓 is the set{
(𝑦, 𝑧,𝑤) ∈ R3 : (𝑎, 𝑦, 𝑧) ∈ 𝐴,𝑤 = 𝑓 (𝑎, 𝑦, 𝑧)

}
.

• For fixed 𝑏 ∈ R, the 𝑦-slice at 𝑏 of the graph of 𝑓 is the set{
(𝑥, 𝑧,𝑤) ∈ R3 : (𝑥, 𝑏, 𝑧) ∈ 𝐴,𝑤 = 𝑓 (𝑥, 𝑏, 𝑧)

}
.

• For fixed 𝑐 ∈ R, the 𝑧-slice at 𝑐 of the graph of 𝑓 is the set{
(𝑥, 𝑦,𝑤) ∈ R3 : (𝑥, 𝑦, 𝑐) ∈ 𝐴,𝑤 = 𝑓 (𝑥, 𝑦, 𝑐)

}
.

These slices are sets in R3 so we can still plot them.

In this section, we illustrated many ways to visualize real-valued functions of two or three variables,
it is good to be familiar with all of them and their relationships with the graph of the function.
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1.4 Vector fields

In this section, we will talk about maps of the form

R𝑛 → R𝑛 .

This is a special case where the dimension of the domain and codomain are the same. There are
two major interpretations of these maps and here, we will view them as vector fields.

Definition 1.4.1 An 𝑛-dimensional vector field is a function 𝐹 with domain and
codomain lying in R𝑛 .

The name "vector field" is inspired by physical examples, and vectors 𝐹(𝑥) often represents the
velocity of a fluid or a force at the point 𝑥 so it is also known as velocity field or force field in those
context.

Example 1.4.2 The ocean is an example of a vector field; at any given moment in
time, each point 𝑥 in the ocean has a velocity 𝐹(𝑥). The same is true of atmospheric
winds and weather patterns, like hurricanes. Magnetic field generated by a magnet
is another example of a vector field, where each point 𝑥 is influenced by a force 𝐹(𝑥)
imposed by the magnet. This also applys to gravitational force fields like planet
Earth.

Given a two or three dimensional vector field, how would we plot it?

Example 1.4.3 Let 𝐹 be the two-dimensional vector field defined by 𝐹(𝑥, 𝑦) =

(−𝑦, 𝑥). Then at each point (𝑎, 𝑏) we would the vector (−𝑏, 𝑎). By doing this process
for many points on a grid, we can produce a vetor field plot as shown below on
the left.

As we can see, the picture on the left is very messy as they are plotted according to
scale. To avoid this, we proportionally rescale the vector so they are smaller, which
here resulted in the plot on the right. Since the relative size of the vectors remain
the same, we can still see where the "fluid" is moving faster.
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Alternatively, we can scale all the vectors to be the same size and use a colour
gradient to represent the magnitude.

Three-dimenisonal vector fields can be visualized in a similar fashion.

Example 1.4.4 The gravitation force field for earth is an example of a vector field
in R3, notice the vectors are coloured according to the magnitude of their force.

Remark 1.4.5 It is nice to be familiar with some with equivalent notation for vector
fields:

𝐹 = (𝑥2, 𝑦𝑥,−𝑧), 𝐹 = ⟨𝑥2, 𝑦𝑥,−𝑧⟩, 𝐹 = [𝑥2, 𝑦𝑧,−𝑧], 𝐹 = 𝑥2𝑖 + 𝑦𝑥 𝑗 − 𝑧𝑘.
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1.5 Coordinate transformations

In this section we will study the same kind of maps as the previous section, however we will view
them as transformation instead of vector field. In this text, any map with domain and codomain

in R𝑛 will be referred to as a transformation. Note that the domain and codomain should be
subsets lying in the same dimension, and it is usually continuous.

Example 1.5.1 The transformation 𝑓 : R2 → R2 given by 𝑓 (𝑢, 𝑣) = (𝑢 + 𝑣, 𝑢 − 𝑣) is
a linear transformation. The transformation 𝑔 : R2 → R2 and ℎ : R2 → R2 given
by 𝑔(𝑢, 𝑣) = (𝑢2 + 𝑣2, 𝑣) and ℎ(𝑢, 𝑣) = (𝑢 + 1, 0) are not linear. We can also show
that 𝑓 is invertible while 𝑔 and ℎ are not.

A coordinate transformation 𝑓 : 𝐴 → 𝐵 will refer to a continuous transformation that is usually
bĳective, and the domain 𝐴 and map 𝑓 create a coordinate system for the codomain 𝐵.
If 𝑏 = 𝑓 (𝑎) we can informally say any one of:

"The point 𝑏 can be written as the point 𝑎 in the coordinate system defined by 𝑓 ."
"The point 𝑏 in 𝐵-space corresponds to the point 𝑎 in 𝐴-space."

This is useful when we are plotting subsets of 𝐵 and wish to describe these subsets using the
coordinate system defined by 𝑓 and 𝐴.

Example 1.5.2 Consider the transformation 𝑔 : R2 → R2 defined by 𝑔(𝑢, 𝑣) =(
𝑢2 + 𝑣2, 𝑣

)
. Since the pair (𝑢, 𝑣) denotes a point in the domain R2, it is a common

convention to use another pair, usually (𝑥, 𝑦), to distinguish points in the codomain
R2. Then we may write

(𝑥, 𝑦) =
(
𝑢2 + 𝑣2, 𝑣

)
to equivalently describe the coordinate transformation 𝑔. Using this notation, take
the point 𝑔(1, 1) = (2, 1) for example, this implies the point (2, 1) in (𝑥, 𝑦) space
corresponds to the point (1, 1) in the (𝑢, 𝑣)-space, note 𝑔(−1, 1) = (2, 1) as well
hence 𝑔 is not invertible.
Transformations in R2 are commonly visualized using two planes. For example,
you can plot the point (1, 1) in the (𝑢, 𝑣)-plane and its image 𝑔(1, 1) = (2, 1) in the
(𝑥, 𝑦)-plane.
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This idea generalizes to any set 𝑆 ⊆ R2 in the (𝑢, 𝑣)-plane and its image 𝑔(𝑠) ⊆ R2

in the (𝑥, 𝑦) − 𝑝𝑙𝑎𝑛𝑒. For example, you can use 𝑆 = [0, 1] × [0.5, 1.5] and obtain the
plot below.

Coordinate transformations are extremely important because they allow you to describe the same
set of set of points in many ways, and thus can dramatically simplify many scenarios why choosing
the correct coordinate system. This features mirrors "change-of-basis" in linear algebra. We will
study three fundamental coordinates systems: polar coordinates in R2, cylindrical coordinates in
R3, and spherical coordinates in R3.

1.5.1 Polar coordinates

A point in the (𝑥, 𝑦)-plane can be described using its distance from the origin and the polar angle.
Formally, we define the polar coordinate transformation 𝑇 : R2 → R2 by

𝑇(𝑟,𝜃) = (𝑟 cos𝜃, 𝑟 sin𝜃).

The variable 𝑟 indicates the radius and 𝜃 is the polar angle. Notice 𝑟 can be negative! Informally
we write

(𝑥, 𝑦) = (𝑟 cos𝜃, 𝑟 sin𝜃)

and geometrically this means:

however, remember that the polar angle 𝜃 is not unique.
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Example 1.5.3 The polar coordinates transformation 𝑇 has a lot of symmetries. By
direct calculation,

𝑇
(
1, 𝜋4

)
=

(
1√
2

, 1√
2

)
, 𝑇

(
−1, 𝜋4

)
=

(
− 1√

2
,− 1√

2

)
,

𝑇
(
2, −𝜋2

)
= 𝑇

(
2, 3𝜋

2

)
= (0,−2), 𝑇

(
0,−𝜋

3

)
= 0.

Plotting the transformation of these points:

Notice that infinitely many points in the (𝑟,𝜃)-plane correspond to the same point
in the (𝑥, 𝑦)-plane.

Remark 1.5.4 Sometimes we might plot points in rectangular coordinates but label
them in polar coordinates. For example, the point (− 1√

2
,− 1√

2
) can be written as

(−1, 𝑝𝑖4 ) in polar coordinates. Many authors only write (−1, 𝑝𝑖4 ) instead of 𝑇(−1, 𝑝𝑖4 ),
so we have to be constantly aware on whether the labelling is in rectangular or
polar.

As we will see in the next few examples, polar coordinates describes shapes like circles, hyperbola,
ellipses much more simply than rectangular coordinates.

Example 1.5.5 What does the polar equation 𝑟 = 2 represent? Informally, notice
that

𝑟2 = (𝑟 cos𝜃)2 + (𝑟 sin𝜃)2 = 𝑥2 + 𝑦2.

Thus the equation 𝑟 = 2 in polar coordinates should represent the circle 𝑥2 + 𝑦2 = 4.
To prove this formally, 𝑟 = 2 corresponds to the set

𝐴 = {(𝑟,𝜃) : 𝑟 = 2,𝜃 ∈ R} = {(2,𝜃) : 𝜃 ∈ R}
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Under the transformation 𝑇, we get

𝑇(𝐴) = {(2 cos𝜃, 2 sin𝜃) : 𝜃 ∈ R}

which is precisely the circle of radius 2 centred at (0, 0).

Example 1.5.6 How about the polar equation 𝜃 = 𝜋
3 ? It is trickier to solve this

equation informally as we must solve the equations 𝑥 = 𝑟 cos𝜃, 𝑦 = 𝑟 sin𝜃 for 𝜃.
This will involve inverse trig functions but we also don’t know about the range of
𝜃. So we will go the formal route. The polar equation 𝜃 = 𝜋

3 corresponds to the set

𝐵 = {(𝑟,𝜃) : 𝑟 ∈ R,𝜃 =
𝜋
3 } = {(𝑟, 𝜋3 ) : 𝑟 ∈ R}

Note that 𝑟 can be any real number as long as we don’t specify 𝑟 ≥ 0. The set then
becomes

𝑇(𝐵) = {(𝑟 cos 𝜋
3 , 𝑟 sin 𝜋

3 ) : 𝑟 ∈ R} = { 𝑟2, 𝑟
√

3
2 : 𝑟 ∈ R}

under the polar coordinate transformation 𝑇, which is a line through the origin.
This is plotted below:

Coordinate transformations typically preserve some kind of geometric properties or modify them
in a predictable manner. This includes the polar coordinate transformation and we will now use two
graphs to see the patterns. On the left-hand side, the grid lines are plotted in the (𝑟,𝜃)2-plane.
The blue vertical grid lines correspond to 𝑟 = 𝑎 for various 𝑎 and the red horizontal grid lines
correspond to 𝜃 = 𝑏. The picture on the right hand side in the (𝑥, 𝑦)-plane are the grid lines after
the transformation.
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We have seen that the polar coordinate transformation is not bĳective on its entire domain, however,
restricting its domain to a subset, we can obtain a bĳection.

Lemma 1.5.7 Let

𝐴 = (0,∞) × (−𝜋,𝜋) and 𝐵 = R2\{(𝑥, 0) : 𝑥 ≤ 0},

then the polar coordinate transformation 𝑇 |𝐴 : 𝐴→ 𝐵 defined by

𝑇(𝑟,𝜃) = (𝑟 cos𝜃, 𝑟 sin𝜃)

is bĳective.

Proof. First, we claim that range 𝑇 |𝐴 ⊆ 𝐵. Suppose not, then there exist 𝑟 cos𝜃 ≤ 0 and 𝑟 sin𝜃 = 0.
This is only possible if 𝜃 is an odd integer multiple𝜋, but since 𝜃 ∈ (−𝜋,𝜋), we have a contradiction,
this proves the claim.
To prove 𝑓 is injective, let (𝑟1,𝜃1), (𝑟2,𝜃2) ∈ 𝐴 be such that 𝑓 (𝑟1,𝜃1) = 𝑓 (𝑟2,𝜃2). Then 𝑟1 cos𝜃1 =

𝑟2 cos𝜃2 and 𝑟1 sin𝜃1 = 𝑟2 sin𝜃2. It follows that

𝑟2
1 = (𝑟1 cos𝜃1)2 + (𝑟1 sin𝜃1)2 = (𝑟2 cos𝜃2)2 + (𝑟2 sin𝜃2)2 = 𝑟2

2 .

Hence 𝑟1 = 𝑟2 are they must both be positive. This implies (cos𝜃1, sin𝜃1) = (cos𝜃2, sin𝜃2). As
𝜃1,𝜃2 ∈ (−𝜋,𝜋), we have cos𝜃1 = cos𝜃2 implies 𝜃1 = ±𝜃2, similarly sin𝜃1 = sin𝜃2 implies 𝜃1 = 𝜃2
or 𝜃1 = 𝜋 − 𝜃2 or 𝜃1 = −𝜋 − 𝜃2. These conditions are satisfied if and only if 𝜃1 = 𝜃2, so we can
conclude that (𝑟1,𝜃1) = (𝑟2,𝜃2).
Finally, to prove that 𝑓 is surjective. Let (𝑥, 𝑦) ∈ 𝐵, Define 𝑟 =

√
𝑥2 + 𝑦2 and

𝜃 =

{
arccos( 𝑥𝑟 ) if 𝑦 ≥ 0,
− arccos( 𝑥𝑟 ) if 𝑦 < 0,

so 𝑟 > 0 and 𝜃 ∈ (−𝜋.𝜋) by definition.By checking the two cases depending on the sign of 𝑦, we
can verify that 𝑓 (𝑟,𝜃) = (𝑥, 𝑦). This proves that 𝑓 is surjective and hence bĳective, as required.

The proof of the above lemma shows that defining an "inverse" for the polar coordinate transfor-
mation is tricky. Many texts suggest the following relationship

𝑟 =

√
𝑥2 + 𝑦2, 𝜃 = arctan

𝑦

𝑥
,

but we must be careful as this only holds for 𝑟 ∈ (0,∞) and 𝜃 ∈ (−𝜋
2 , 𝜋2 ).
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Chapter 1. Maps

1.5.2 Cylindrical coordinates

We can extend the idea of polar coordintaes in R2 to a coordinate system in R3 in two ways. We
define the cylindrical coordinate transformation 𝑇 : R3 → R3 by

𝑇(𝑟,𝜃, 𝑧) = (𝑟 cos𝜃, 𝑟 sin𝜃, 𝑧).

The variable 𝑟 is the polar radius, 𝜃 is the polar angle, and the variable 𝑧 is the usual rectangular co-
ordinate. Informally, we say the point (𝑥, 𝑦, 𝑧) can be written as (𝑟,𝜃, 𝑧) in cylindrical coordinates.

This allows us to plot points in rectangular coordinates but label them in cylindrical coordinates.
As with polar coordinates, there are infinitely many ways to write a rectangular coordinate in cylin-
drical coordinates. Much like the name suggests, cylindrical coordinates are useful for describing
objects with rotational symmetry about the 𝑧-axis in simpler terms.

Example 1.5.8 What does the equation 𝑟 = 2 represent in R3? Formally, it is the set

𝐴 = {(𝑟,𝜃, 𝑧) : 𝑟 = 2,𝜃 ∈ R, 𝑧 ∈ R} = {(2,𝜃, 𝑧) : 𝜃 ∈ R, 𝑧 ∈ R}

Then
𝑇(𝐴) = {(2 cos𝜃, 2 sin𝜃, 𝑧) : 𝜃 ∈ R, 𝑧 ∈ R}, )

by fixing some for value for 𝑧, we see that the 𝑧-slice of 𝑇(𝐴) is the set

{(2 cos𝜃, 2 sin𝜃) : 𝜃 ∈ R} ⊆ R2,

which is a circle of radius 2, hence 𝑟 = 2 creates a cylinder in R3!

View this demo for a visualization of this shape.

26

https://www.math3d.org/KXyvgofu


1.5. Coordinate transformations

Example 1.5.9 From our example using polar coordinates in R2, we can guess that
the cylindrical equation 𝜃 = 𝜋

4 represents a plane passing through the 𝑧-axis. More
formally, its image is the set

𝐵 = {(𝑟, 𝜋4 , 𝑧) : 𝑟, 𝑧 ∈ R}

and so its under the transformation 𝑇, we get

𝑇(𝐵) = {(𝑟 cos
𝑝𝑖

4 , 𝑟 sin 𝜋
4 ) : 𝑟, 𝑧 ∈ R} = {( 𝑟√

2
, 𝑟√

2
, 𝑧) : 𝑟, 𝑧 ∈ R}

View this demo for a visualization of this plane.

Example 1.5.10 The cylindrical equation 𝑧 = −1 is just a flat plane, as its image is
the set

𝐶 = {(𝑟,𝜃,−1) : 𝑟,𝜃 ∈ R} =⇒ 𝑇(𝐶) = {(𝑟 cos𝜃, 𝑟 sin𝜃,−1) : 𝑟,𝜃 ∈ 𝑅}

The cylindrical coordinate transformation is also a bĳection once we restrict its domain.

Lemma 1.5.11 Let

𝐴 = (0,∞) × (−𝜋,𝜋) × R and 𝐵 = R3\{(𝑥, 0, 𝑧) : 𝑥 ≤ 0, 𝑧 ∈ R},

then the cylindrical coordinate transformation 𝑇 |𝐴 : 𝐴→ 𝐵 defined by

𝑇(𝑟,𝜃, 𝑧) = (𝑟 cos𝜃, 𝑟 sin𝜃, 𝑧)

is bĳective.

Proof. An analogous proof can be given using the arguments for polar coordinates.

There are many other ways to restrict the domain to obtain a bĳection with cylindrical coordinates,
but for now, these examples will be enough. The key takeaway is that this coordinate system can
nicely describe objects with rotational symmetry about eh 𝑧-axis.

1.5.3 Spherical coordinates

Another way of extending polar coordinates in R2 is through spherical coordinates in R3. We
define the spherical coordinate transformation 𝑇 : R3 → R3 by

𝑇(𝜌,𝜃, 𝜙) = (𝜌 cos𝜃 sin 𝜙, 𝜌 sin𝜃 sin 𝜙, 𝜌 cos 𝜙).
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Chapter 1. Maps

The variable 𝜌 is the (spherical) radius, the variable 𝜃 is the polar angle (or azimuthal angle), and the
variable 𝜙 is the inclination angle (or zenith angle). Similarly to polar coordinates, 𝜌,𝜃, 𝜙 can be any
real numbers, despite many resources restricting their values. Informally, we say the point (𝑥, 𝑦, 𝑧)
can be written as (𝜌,𝜃, 𝜙) in spherical coordinates. The geometry of this coordinates system is
shown below.

Play around with this demo to get a feeling of how spherical coordinates work.

Example 1.5.12 Locations on the Earth’s surface are described with latitude and
longitude, this is an example of spherical coordinates. Roughly speaking, longitude
relates to the polar angle 𝜃 and latitude relates to the azimuthal angle 𝜙. Although
the Earth is not a perfect sphere, it spherical radius 𝜌 is ≈ 6, 378𝑘𝑚.

As usual, there are infinitely many ways to write some point in (𝑥, 𝑦, 𝑧)-space as a spherical
coordinates.

28

https://www.math3d.org/gDZmm43P


1.5. Coordinate transformations

Example 1.5.13 Lets look at what the equation 𝜌 = 2 represent in R3. Since 𝜌 is the
distance from the origin, we might guess that we should get a sphere with radius
2. This is indeed correct and we can verify it in many ways. Informally, notice

𝑥2 + 𝑦2 + 𝑧2 = 𝜌2 cos2 𝜃 sin2 𝜙 + 𝜌2 sin2 𝜃 sin2 𝜙 + 𝜌2 cos2 𝜙

= 𝜌2 sin2 𝜙 + 𝜌2 cos2 𝜙

= 𝜌2 = 4,

Formally, the spherical equation correspond to the set of points

𝐴 = {(𝜌,𝜃, 𝜙) : 𝜌 = 2,𝜃 ∈ R, 𝜙 ∈ R} = {(2,𝜃, 𝜙) : 𝜃 ∈ R, 𝜙 ∈ R}

Applying 𝑇, we get

𝑇(𝐴) = {(2 cos𝜃 sin 𝜙, 2 sin𝜃 sin 𝜙, 2 cos 𝜙) : 𝜃 ∈ R, 𝜙 ∈ R}

but what is the shape of this set? From the equation above, we can show every
point in 𝑇(𝐴) satisfies 𝑥2 + 𝑦2 + 𝑧2 = so 𝑇(𝐴) is a subset of the sphere of radius 2,
but to show 𝑇(𝐴) is equal to the sphere of radius 2, we need to show that opposite
direction as well. This requires some extra work and is left as an exercise for the
reader. (Apply the same idea with how you proved Lemma below)

Example 1.5.14 The spherical equation 𝜃 = 𝜋
4 represents the same object as it does

in cylindrical coordinates. This should not be a surprise the polar angle is fixed in
both cases, while the other two variable can span the whole 2d plane. Formally
this conclusion is not as obvious. If 𝐵 =

{(
𝜌, 𝜋4 , 𝜙

)
: 𝜌, 𝜙 ∈ R

}
then its image under

the spherical coordinate transformation is

𝑇(𝐵) =
{(
𝜌 cos 𝜋

4 sin 𝜙, 𝜌 sin 𝜋
4 sin 𝜙, 𝜌 cos 𝜙

)
: 𝜌, 𝜙 ∈ R

}
=

{(
1√
2
𝜌 sin 𝜙, 1√

2
𝜌 sin 𝜙, 𝜌 cos 𝜙

)
: 𝜌, 𝜙 ∈ R

}
.

Indeed it is not obvious that this matches 1.5.9. The proof of this is left as an
exercise.

We can as well restrict the domain to make the spherical coordinate transformation a bĳection.
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Lemma 1.5.15 Let

𝐴 = (0,∞) × (−𝜋,𝜋) × (0,𝜋) and 𝐵 = R3\{(𝑥, 0, 𝑧) : 𝑥 ≤ 0, 𝑧 ∈ R},

then the spherical coordinate transformation 𝑇 |𝐴 : 𝐴→ 𝐵 defined by

𝑇(𝜌,𝜃, 𝜙) = (𝜌 cos𝜃 sin 𝜙, 𝜌 sin𝜃 sin 𝜙, 𝜌 cos 𝜙)

is bĳective.

Proof. A proof can be given using similar arguments as polar coordinates.

1.6 Manifolds

In linear algebra, we learned how to calculate the dimension of a set described by some linear
equations, which is calculated by finding the size of a basis, this means we can study "flat" object
lines, planes, and subspaces. However, many geometric objects are not defined this way, thus
inducing a important question

If a set 𝑆 ⊆ R𝑛 is described by a nonlinear equation, then what is its "dimension"? How do we even
define "dimension"?

This question will be a central problem in multivariable calculus, and we will need to develop
some significant theory before even approaching it. At the moment, we will use low dimensional
cases to get some intuition.
The first case is the idea of a "curve", which can be through as bending a straight line. Since a
straight line is a 1-dimensional linear object in some higher dimensional space, a curve should
probably be thought of as a 1-dimensional nonlinear object living in higher dimensions.
The second case is the idea of a "surface". This will capture the core issues of the question above.
intuitively speaking, a surface is presumable created by bending a piece of a plane in R3, so a
surface can probably be thought of as a 2-dimensional nonlinear object living in 3-dimensional
space.
The general case defines the idea of a "manifold". Fix 𝑘, 𝑛 ∈ N+ with 𝑘 < 𝑛, intuitively a 𝑘-
dimensional manifold in R𝑛 should presumably be created by bending a piece of a 𝑘-dimensional
plane in R𝑛 . But to be able to rigorously define manifolds, it will take many chapters of preparation
and right now, we will take a step back and look at a more foundational question:

How can a set 𝑆 ⊆ R𝑛 be described by nonlinear equations? is there more than one way?

In this section, we will explore the three fundamental forms for describing sets: parametric form,
explicit form, and implicit form.
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1.6.1 Parametric form

One natural way to describe sets with nonlinear equations is using maps of the form

R𝑛 → R𝑚

where 𝑛 < 𝑚. We have already seen the case 𝑛 = 1 but these are very special, so we will focus on
when 𝑛 ≥ 2. The visual focus here will be on the case 𝑛 = 2 and 𝑚 = 3. These maps will

presumably create surfaces, i.e. 2-dimensional manifolds in R3.

Example 1.6.1 The unit sphere is the sphere of radius 1 centred at the origin. Let
𝑆 be the unit sphere in R3, we can define 𝑔 : R2 → R3 by

𝑔(𝜃, 𝜙) = (cos𝜃 sin 𝜙, sin𝜃 sin 𝜙, cos 𝜙).

This is the spherical coordinate transformation with the spherical radius fixed, so

𝑆 = {𝑔(𝜃, 𝜙) : (𝜃, 𝜙) ∈ R2} = 𝑖𝑚𝑔(𝑔).

Hence it seems reasonable to guess that 𝑆 will be a "2-dimensional manifold in R3

as it can be described as the image of a map with domain R2.
Unfortunately, this calculation is not good enough for a definition of a surface. For
example, we could be silly and define ℎ : R2 → R3 by

ℎ(𝜃, 𝜙) = (cos𝜃, sin𝜃, 0),

the image of ℎ is a unit circle lying in the 𝑧 = 0 plane. We see that despite being
described by a function from R2 → R3, we have a 1-dimensional manifold! How
can we find a formal way of distinguishing these two scenarios? That is a tough
question for much later.

Despite the challenges presented by this example, we can extend this idea to any dimension.

Definition 1.6.2 Let 𝑚, 𝑛 ∈ N+ with 𝑛 < 𝑚. A set 𝑆 ⊆ R𝑚 can be written in
parametric form (with 𝑛-variables) if there exists a set 𝐴 ⊆ R𝑛 and a continuous
map 𝑔 : 𝐴→ R𝑚 such that

𝑆 = {𝑔(𝑥) : 𝑥 ∈ 𝐴} = 𝑖𝑚𝑔(𝑔).

Equivalently, we say the set 𝑆 is parametrized by 𝑔.

If a set in R𝑚 is parametrized by a map with 𝑛 inputs, then we might guess that it should be
an 𝑛-dimensional manifold in R𝑚 . However, as the above example illustrated, the set could be
anything! Thus, the definition above is only a starting point and does not fully match our intuitive
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understanding of an 𝑛-dimensional manifold. The definition simply gives one way to describe sets
with nonlinear equations.

1.6.2 Explicit form

Another way to describe sets is a special case of parametric form. In particular, we have already
encountered a large class of sets which are easy to parametrize: graphs.

Example 1.6.3 The graph of the real-valued function 𝑓 (𝑥, 𝑦) = 𝑥2 + 𝑦2 is the set

𝑆 = {(𝑥, 𝑦, 𝑧) ∈ R3 : 𝑧 = 𝑓 (𝑥, 𝑦)} = {(𝑥, 𝑦, 𝑧) ∈ R3 : 𝑧 = 𝑥2 + 𝑦2}

in R3. To parametrize this set, simply define 𝑔 : R2 → R3 by 𝑔(𝑥, 𝑦) = (𝑥, 𝑦, 𝑥2 + 𝑦2)
so img(𝑔) = 𝑆. Now, by convention, the graph of 𝑓 is always defined using the
𝑧-coordinate but as long as we can express one coordinate as a function of the
others, the set will be a graph. For example, sets

𝑆1 = {(𝑥, 𝑦, 𝑧) ∈ R3 : 𝑥 = 𝑦2 + 𝑧2} 𝑆2 = {(𝑥, 𝑦, 𝑧) ∈ R3 : 𝑦 = 𝑥2 + 𝑧2}

are also graphs of 𝑓 which can be parametrized as well. From left to right, the plots
of 𝑆, 𝑆1, 𝑆2 are below.

These sets are all called paraboloids.

The above example illustrates that if 𝑓 : R2 → R is a real-valued function, then any of the following
sets

{𝑥, 𝑦, 𝑧) ∈ R3 : 𝑥 = 𝑓 (𝑦, 𝑧)}, {𝑥, 𝑦, 𝑧) ∈ R3 : 𝑦 = 𝑓 (𝑥, 𝑧)}, {𝑥, 𝑦, 𝑧) ∈ R3 : 𝑧 = 𝑓 (𝑥, 𝑦)}

are graphs of 𝑓 , with the third set being the one commonly referred to.

Example 1.6.4 Real-valued functions are not the only maps that create graphs. We
can use vector-valued functions, too. For example, the graph of the map 𝛾 : R → R2
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defined by 𝛾(𝑡) = (cos 𝑡, sin 𝑡) is the set

𝑆 = {(𝑡, cos 𝑡, sin 𝑡) : 𝑡 ∈ R}

lying in R × R2 = R3. This produces a helix along the 𝑥-axis. Notice the 𝑦 and 𝑧

variables are functions of the 𝑥 variable.

Graphs can therefore be formalized to any dimension.

Definition 1.6.5 Let 𝑚, 𝑛 ∈ N+ with 𝑛 < 𝑚. Let 𝐴 ⊆ R𝑛 . The graph of a function
𝑓 : 𝐴→ R𝑚−𝑛 is the set

𝑆 = {(𝑥, 𝑓 (𝑥)) : 𝑥 ∈ 𝐴} ⊆ R𝑛 × R𝑚−𝑛 = R𝑚 .

A set 𝑆′ ⊆ R𝑚 is a graph of 𝑓 if 𝑆′ is the same as 𝑆 up to reordering the variables.

Remark 1.6.6 "Reordering variables" can be formally expressed as 𝑆′ = 𝜋(𝑆) for
a linear transformation 𝜋 : R𝑚 → R𝑚 given by 𝜋(𝑥) = 𝑃𝑥 where 𝑃 is a 𝑚 × 𝑚
permutation matrix.

As the examples demonstrate, graphs can always be written in parametric form. This gives a new
definition:

Definition 1.6.7 Let𝑚, 𝑛 ∈ N+ with 𝑛 < 𝑚. A set 𝑆 ⊆ R𝑚 can be written in explicit
form (in 𝑛 variables) if 𝑆 if 𝑆 is a graph of a continuous function 𝑓 : 𝐴 → R𝑚−𝑛

where 𝐴 ⊆ 𝑅𝑛 .

Example 1.6.8 In the last subsection, we’ve shown that the unit sphere 𝑆 ∈ R3 can
be written in parametric form. However it cannot be represented in explicit, here
is a sketch of the proof:

Proof. We prove by contradiction,so suppose that 𝑆 can be written in explicit form.
Then there are 6 cases to consider by 1.6.6. Lets just consider the case

𝑆 = {(𝑥, 𝑦, 𝑧) ∈ R3 : 𝑧 = 𝑓 (𝑥, 𝑦)}

for some continuous real-valued two variable function 𝑓 . Then notice that
(0, 0,±1) ∈ 𝑆 which implies 𝑓 is not a function, a contradiction. We can then
extend this to the other five cases 𝑥 = 𝑓 (𝑦, 𝑧), 𝑦 = 𝑓 (𝑥, 𝑧),etc.. using an analogous
argument, as (0,±1, 0) ∈ 𝑆 and (±1, 0, 0) ∈ 𝑆.
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Although 𝑆 cannot be written in explicit form, it can be written as a finite union of
sets in explicit form! In particular,

𝑆 =

{
(𝑥, 𝑦, 𝑧) ∈ R3 : 𝑧 =

√
1− 𝑥2 − 𝑦2

}
∪
{
(𝑥, 𝑦, 𝑧) ∈ R3 : 𝑧 = −

√
1− 𝑥2 − 𝑦2

}
so 𝑆 is the union of the graphs of 𝑓 (𝑥, 𝑦) =

√
1− 𝑥2 − 𝑦2 and of 𝑔(𝑥, 𝑦) =

−
√

1− 𝑥2 − 𝑦2, which each represents the upper and lower hemisphere.

Informally, we can see that each hemisphere passes the vertical line tests while the
whole sphere does not.

Thus, sets in explicit form can always be written in parametric form, but the converse is not
necessarily true, as sets in explicit form is a very special form of parametric form.

1.6.3 Implicit form

Sets can also be naturally described by nonlinear equations using maps of the form

R𝑛 → R𝑚

when 𝑛 > 𝑚. For instance, a real-valued function R3 → R can create a surface via its level sets.

Example 1.6.9 The unit sphere 𝑆 in R3 is defined to be the set of points that are
distance 1 away from the origin, i.t.

𝑆 = {(𝑥, 𝑦, 𝑧) ∈ R3 : 𝑥2 + 𝑦2 + 𝑧2 = 1},

which is the 1-level set of the function 𝑓 (𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2 + 𝑧2. The implicit equation

𝑥2 + 𝑦2 + 𝑧2 = 1

does not explicitly express one variable in terms of the others.

Other sets can also be created by looking at maps R𝑛 → R𝑚 where 𝑛 > 𝑚 ≥ 2.
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Example 1.6.10 Define 𝑓 : R3 → R2 by 𝑔(𝑥, 𝑦, 𝑧) = (𝑧 − 𝑥2 − 𝑦2, 𝑥2 + 𝑦2 + 𝑧2).
Consider the set 𝐶 in R3 defined by

𝐶 = {(𝑥, 𝑦, 𝑧) ∈ R3 : 𝑔(𝑥, 𝑦, 𝑧) = (0, 9)}.

In other words, 𝐶 is the set of points satisfying the two non-linear equations

𝑧 − 𝑥2 − 𝑦2 = 0, 𝑥2 + 𝑦2 + 𝑧2 = 9.

Lucikly, we can solve to find that 𝐶 is the circle 𝑥62 + 𝑦2 = 𝑎 lying in the plane
𝑧 = 𝑎 where 𝑎 = 1

2 (
√

37 − 1). In other words, 𝐶 is a curve implicitly defined by
2 non-linear equations. View this demo to see how 𝐶 is the intersection of two
surfaces.

These examples suggest a third way to describe sets by nonlinear equations.

Definition 1.6.11 Let 𝑚, 𝑛 ∈ N+ with 𝑛 > 𝑚. A set 𝑆 ⊆ R𝑛 can be written in
implicit form (with 𝑚 equations) if there exists a constant 𝑐 ∈ R𝑚 , a set 𝐴 ⊆ R𝑛 ,
and a continuous function 𝑓 : 𝐴→ R𝑚 such that

𝑆 = 𝑓 −1({𝑐}) = {𝑥 ∈ R𝑛 : 𝑓 (𝑥) = 𝑐}.

Remark 1.6.12 the notation 𝑓 −1 is not the inverse function of 𝑓 in this case, but the
preimage of the set {𝑐}

Example 1.6.13 The unit sphere 𝑆 in R3 can be written in implicit form, because
it is the 1-level set of the continuous function 𝑓 (𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2 + 𝑧2, that is
𝑆 = 𝑓 −1({1}). Similarly, the set 𝐶 in Example 1.6.10 is 𝐶 = 𝑔−1({(0, 9)}).

Example 1.6.14 The paraboloid {(𝑥, 𝑦, 𝑧) ∈ R3 : 𝑧 = 𝑥2 + 𝑦2} is written in implicit
form, isnce it is the 0 level set of 𝑓 (𝑥, 𝑦, 𝑧) = 𝑧 − 𝑥2 − 𝑦2. The same rick can be used
for any graph, so we see that any sets in explicit form can always be written in
implicit form.

If a set in R𝑛 is written in implicit form with 𝑚 nonlinear equations, then what would you guess
to be its "dimension"?We can use linear algebra to formulate an educated guess: A system with 𝑛
variables and 𝑚 linear equations can be represented by an equation of the form 𝐴𝑥 = 0, where 𝐴
is an 𝑚 × 𝑛 matrix and 𝑥 ∈ R𝑛 is unknown. The set of solutions to this linear system is the null
space of 𝐴, if 𝑚, 𝑛 and the 𝑚 linear equations are linearly independent, then the null space is
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(𝑛 −𝑚)-dimensional. While sets in implicit form are defined using nonlinear equations, a similar
principle appears to hold true in some sense.

Example 1.6.15 The unit sphere 𝑆 in R3 is written in implicit form with 1 nonlinear
equation 𝑥2 + 𝑦2 + 𝑧2 = 1 in 3 variables 𝑥, 𝑦, 𝑧. This means the sphere should pre-
sumably be 3− 1 = 2 dimensional, which it is! Similarly, this also holds for Example
1.6.10 which is 1 dimensional. This acts as some evidence that the principles of
linear algebra may carry over to nonlinear systems.

This investigation is the beginning of something much greater, namely the implicit function the-
orem. We will explore that in depth later but for now, the key takeaway is that sets can have
three different descriptions: parametric, explicit, and implicit. Each with its own advantages and
disadvantages.

1.7 Projections

Lastly, we will talk about maps of the form

𝑅𝑛 → R𝑚

where 𝑛 > 𝑚. These maps are sometimes referred to as projections as they push higher dimen-
sional objects into a lower dimensional space. As usual, we will focus on the special case R3 → R2

to provide some visual intuitions.

Example 1.7.1 Creating a map of the Earth is a classical projection problem. You
must push a sphere, an object in R3, into a rectangle, an object in R2. The Mercator
projection, invented in 1569 , is the modern standard, which is still used in Google
Maps to this day.

This non-linear projection preserves local directions so its popularity rose due to
its use for ocean navigation. However, by reducing dimensions, it loses some
geometric information. The Mercator projection distorts distances dramatically.
Greenland and the African continent appear to be the same size on the map, but
Africa is actually 14 times larger!
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There are some simple and common examples of projections.

Example 1.7.2 For 𝑖 ∈ {1, ..., 𝑛}, the map 𝜋𝑖 : R𝑛 → R given by

𝜋𝑖 (𝑥1, . . . , 𝑥𝑛) = 𝑥𝑖

is called the 𝑖th coordinate map. These are convenient for proofs when you are
trying to express some quantities in terms of continuous maps. Notice 𝜋𝑖 is a linear
transformation.

Remark 1.7.3 The Greek letter 𝜋 is often used for projections. Since 𝜋 is used for
other reasons, this is an abuse of notation. You are permitted to abuse notation
provided the context makes your notation unambiguous.

Example 1.7.4 Example 1.6.5 For 𝑖 ∈ {1, . . . , 𝑛}, the map Π𝑖 : R𝑛 → R𝑛−1 given by

Π𝑖 (𝑥1, . . . , 𝑥𝑛) = (𝑥1, . . . , 𝑥𝑖−1, 𝑥𝑖+1, . . . , 𝑥𝑛)

is the 𝑖th coordinate plane projection. These are also linear transformations which
are convenient for proofs. They also have a natural interpretation as the "shadow"
of an object.
In particular, for 𝑛 = 3, the map Π3(𝑥, 𝑦, 𝑧) = (𝑥, 𝑦) is also referred to as the projec-
tion into the 𝑥𝑦-plane. The image of the paraboloid 𝑃 =

{
(𝑥, 𝑦, 𝑧) : 𝑧 = 𝑥2 + 𝑦2 ≤ 1

}
under Π3 is the unit disk

{
(𝑥, 𝑦) ∈ R2 : 𝑥2 + 𝑦2 ≤ 1

}
in R2. Informally speaking, Π3

produces the "shadow" of an object in R3 when viewed from above.
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2.1 Balls, spheres, rectangles, and cubes

2.1.1 Balls and spheres

In this course, we will use the Euclidean inner product on R𝑛 , and the notion of distance is defined
by the norm of a point 𝑥 = (𝑥1, ..., 𝑥𝑛) ∈ R𝑛 as

| |𝑥 | | =
√
𝑥2

1 + · · · + 𝑥2
𝑛 .

This function defines the most fundamental sets in R𝑛 : balls and spheres.

Definition 2.1.1

• The open ball of radius 𝑟 centred at 𝑎 is the set𝐵𝑟(𝑎) = {𝑥 ∈ R𝑛 : | |𝑥− 𝑎 | | < 𝑟}.
• The closed ball of radius 𝑟 centred at 𝑎 is the set {𝑥 ∈ R𝑛 : | |𝑥 − 𝑎 | | ≤ 𝑟}.
• The sphere of radius 𝑟 centred at 𝑎 is the set {𝑥 ∈ R𝑛 : | |𝑥 − 𝑎 | | = 𝑟}.

Remark 2.1.2 Other notations for the open ball include 𝐵(𝑎, 𝑟), 𝐵(𝑎; 𝑟), or 𝐵𝑎(𝑟), but
none of them will appear in this text.

Remark 2.1.3 An open or closed ball is puncture if it excludes the centre. For
example, 𝐵𝑟(𝑎)\{𝑎} is a punctured open ball.

The word "ball" and "sphere" are inspired by the three-dimensional case, where balls are always
solid and spheres are always hollow. In the 1-dimensional case, "balls’ are reduced to intervals, an

open ball of radius 𝑟 at 𝑎 would be (𝑎 − 𝑟, 𝑎 + 𝑟), while a closed ball would be [𝑎 − 𝑟, 𝑎 + 𝑟]. In
two-dimensional, "balls" are disks and "spheres" are circles.
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Remark 2.1.4 Notice that an open ball of radius 0 is empty, a closed ball of radius
0 centred at 𝑎 ∈ R𝑛 is the singleton {𝑎}. It is silly to refer to balls of radius 0
but sometimes we may want to include this degenerate case in a formal proof or
statement.

Definition 2.1.5 The (𝑛 − 1)-dimensional unit sphere in R𝑛 is the sphere of radius
1 centred at the origin and is denoted 𝑆𝑛−1. In other words, 𝑆𝑛−1 = {𝑥 ∈ R𝑛 : | |𝑥 | | =
1}.

Example 2.1.6 𝑆1 is the unit circle {(𝑥, 𝑦) ∈ R2 : 𝑥2 + 𝑦2 = 1} in R2. 𝑆2 is the unique
sphere {(𝑥, 𝑦, 𝑧) ∈ R2 : 𝑥2 + 𝑦2 + 𝑧2 = 1} in R3.

2.2 Rectangles and cubes

We can also generalize intervals in R𝑛 using Cartesian products.

Definition 2.2.1 A closed rectangle in R𝑛 is a set 𝑅 of the form

𝑅 = [𝑎1, 𝑏1] × · · · × [𝑎𝑛 , 𝑏𝑛] = {(𝑥1, ..., 𝑥𝑛) : 𝑥𝑖 ∈ [𝑎𝑖 , 𝑏𝑖], 1 ≤ 𝑖 ≤ 𝑛, }

where 𝑎1, 𝑏1, ..., 𝑎𝑛 , 𝑏𝑛 ∈ R and 𝑎𝑖 < 𝑏𝑖 for all 1 ≤ 𝑖 ≤ 𝑛.

Remark 2.2.2 The set (𝑎1, 𝑏1) × · · · × (𝑎𝑛 , 𝑏𝑛) is an open rectangle. In general, a
"rectangle" refers to a closed rectangle unless specified otherwise.

Example 2.2.3 1-dimensional rectangles are closed intervals, like [𝑎, 𝑏]where 𝑎 < 𝑏,
while open rectangle are (𝑎, 𝑏). The singleton {𝑎} is not a rectangle. In two
dimension, rectangle are what they are in the usual colloquial sense. The set
[0, 3] × [−1, 1] is a rectangle in R2. The set (0, 3) × (−1, 1) is an open rectangle. The
set [0, 3] × {2} is not a rectangle. The set [0, 3] × (−1, 1) is neither an open rectangle
nor a closed rectangle.
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Definition 2.2.4 An n-dimensional hypercube is a set in R𝑛 of the form

[𝑎, 𝑏]𝑛 = [𝑎, 𝑏] × · · · × [𝑎, 𝑏]

The unit hypercube is the set [0, 1]𝑛 .

Note that a 2-dim hypercube is just the square and [0, 1]2 is the unit square. A 3-dim hypercube
is a cube and [0, 1]3 is the unit cube. They are all "solid"

2.2.1 Interior, boundary, and closure

Given a solid object in 3-dimensions, we hvae an intuitive physical understanding of its inside,
outside, and edge. But how to we extend this idea to R𝑛? A simple yet brilliant solution is to
"zoom in" with respect to a point.

The four pictures above illustrates a set 𝐴 ⊆ R2 and three different points 𝑎, 𝑏, 𝑐 ∈ R2, with the
radii of each ball getting smaller and smaller each time.

2.2.2 Interior

With the intuition above, we can define an interior point as

Definition 2.2.5 Let 𝐴 ⊆ R𝑛 be a set. A point 𝑝 ∈ R𝑛 is an interior point of 𝐴 if
there exists 𝜖 > 0 such that 𝐵𝜖(𝑝) ⊆ 𝐴.

42



2.2. Rectangles and cubes

Example 2.2.6 The point 𝑝 = 2 is an interior point of the interval 𝐴 = [1, 4) since
𝐵1/2(2) = (1.5, 2.5) is a subset of 𝐴. To show that some point is not an interior point
of 𝐴, we need to prove the negation:

∀𝜖 > 0, 𝐵𝜖(5) = (5− 𝜖, 5+ 𝜖) ⊈ [1, 4) = 𝐴

This is easy as for any 𝜖 > 0, 𝑥 ∈ (5− 𝜖, 5+ 𝜖) yet 𝑥 ∉ [1, 4), hence 𝐵𝜖(5) ⊈ [1, 4) so 5
is not an interior point of 𝐴. Now to check that an endpoint is not an interior point,
we can follow the same argument but our choice of 𝑥 will be dependent on 𝜖.

Proving an open ball is a subset of another set is a bit more trickier in higher dimensions. Suppose
we are given the set

𝐴 = {(𝑥, 𝑦) ∈ R2 : 𝑥 ≤ 2}.

How do we prove that the point 𝑝 = (1, 0) is an interior point of 𝐴? Using the definition, it suffices
to show that the open ball 𝐵1/2((1, 0)) is a subset of 𝐴. Formally, this means all points in 𝐵1/2((1, 0))
are in 𝐴. So let (𝑥, 𝑦) ∈ 𝐵1/2((1, 0)), then (𝑥 − 1)2 + 𝑦2 < (1

2 )2, since 𝑦2 ≥ 0, this implies

(𝑥 − 1)2 < (12 )
2 =⇒ 𝑥 − 1 <

1
2 =⇒ 𝑥 ≤ 2.

Thus (𝑥, 𝑦) ∈ 𝐴 as required, which means (1, 0) is an interior point of 𝐴.

Definition 2.2.7 Let 𝐴 ⊆ R𝑛 be a set. The interior of 𝐴, denoted 𝐴𝑜 or int(𝐴), is
the set of interior points of 𝐴.

Example 2.2.8 The interval of 𝐴 = [1, 4) is the open interval 𝐴𝑜 = (1, 4).For (1, 4) ⊆
𝐴𝑜 , we need to prove

∀𝑥 ∈ (1, 4),∃𝜖 > 0, 𝑠.𝑡. (𝑥 − 𝜖, 𝑥 + 𝜖) ⊆ [1, 4).

Let 𝑥 ∈ (1, 4), set 𝜖 = min( 𝑥−1
2 , 4−𝑥

2 ) > 0 and we can verify that this 𝜖 indeed satisfy
the equation above, implying that 𝐴𝑜 = (1, 4). Conversely, to prove that 𝐴𝑜 ⊆ (1, 4),
we must show that is 𝑝 ∉ (1, 4) =⇒ 𝑝 ∉ 𝐴𝑜 . Take any 𝑝 ∈ 𝐴𝑐 , so 𝑝 < 1 or 𝑝 ≥ 4.
For any 𝜖 > 0, the ball 𝐵𝜖(𝑝) = (𝑝 − 𝜖, 𝑝 + 𝜖) is not a subset of 𝐴 as 𝑝 itself is not in 𝐴,
this shows 𝑝 ∉ 𝐴𝑜 . Finally to show that 𝑝 = 1 is not an interior point of 𝐴, for any 𝜖

simply take 𝑥 = 1− 𝜖
2 which is in 𝐵𝜖(1) but not in 𝐴. This completes the proof.

There are some important examples which we should remember, let 𝑎 ∈ R𝑛 and 𝑟 > 0.

• The interior of R𝑛 is R𝑛 .

• The interior of any finite set is empty. (Any open ball contains an infinite number of points)
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• The interior of the open ball 𝐵𝑟(𝑎) is the open ball itself.
• The interior of the closed ball {𝑥 ∈ R𝑛 : | |𝑥 − 𝑎 | | ≤ 𝑟} is the open ball 𝐵𝑟(𝑎)
• The interior of any sphere is empty.
• The interior of the hypercube [𝑐, 𝑑]𝑛 is the open hypercube (𝑐, 𝑑)𝑛 , where 𝑐 < 𝑑.

Not all sets have nice geometric interpretations. The set of rational numbers Q is an example. Its
interior is empty because any interval of rational numbers must contain irrational numbers, so
𝐵𝜖(𝑞) cannot be a subset of Q for any 𝑞 ∈ Q. The interior satisfies natural properties with respect

to other set operations.

Lemma 2.2.9 Let 𝐴 and 𝐵 be sets of R𝑛 , then

1. 𝐴𝑜 ⊆ 𝐴

2. 𝐴𝑜 ∪ 𝐵𝑜 ⊆ (𝐴∪ 𝐵)𝑜

3. 𝐴𝑜 ∩ 𝐵𝑜 = (𝐴∩ 𝐵)𝑜

4. 𝐴𝑜 × 𝐵𝑜 = (𝐴 × 𝐵)𝑜

Proof. 1. Trivial from definition.
2. Suppose 𝑥 ∈ 𝐴𝑜 ∪ 𝐵𝑜 , without loss of generality suppose 𝑥 ∈ 𝐴𝑜 , then there exist an open ball
𝐵𝜖(𝑥) ⊆ 𝐴 for some 𝜖 > 0, clearly 𝐵𝜖(𝑥) ⊆ 𝐴∪ 𝐵 hence 𝑥 ∈ (𝐴∪ 𝐵)𝑜 .

3. First suppose 𝑥 ∈ 𝐴𝑜 ∩ 𝐵𝑜 , then there exist open ball 𝐵𝜖(𝑥) ⊆ 𝐴 and 𝐵𝜙(𝑥) ⊆ 𝐵 for some
𝜖 > 0 and 𝜙 > 0. Take 𝑟 = min(𝜖, 𝜙), then 𝐵𝑟(𝑥) ⊆ 𝐴 ∩ 𝐵, so 𝑥 is an interior point of 𝐴 ∩ 𝐵,
as required. Conversely, if 𝑥 ∈ (𝐴 ∩ 𝐵)𝑜 , by definition there is an open ball 𝐵𝑟(𝑥) ⊆ 𝐴 ∩ 𝐵,
hence this open ball is an contained entirely in 𝐴 and 𝐵, so it is an interior point of 𝐴 and 𝐵,
completing the proof.
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4. First suppose (𝑎, 𝑏) ∈ 𝐴𝑜 × 𝐵𝑜 , then by definition we have two open balls of radius 𝜖, 𝜙 such
that 𝐵𝜖(𝑎) ⊆ 𝐴 and 𝐵𝜙(𝑏) ⊆ 𝐵. Let 𝑟 = min(𝜖, 𝜙) and consider the open ball 𝐵𝑟((𝑎, 𝑏)). For
any (𝑥, 𝑦) ∈ 𝐵𝑟((𝑎, 𝑏)), we have

| |(𝑥, 𝑦) − (𝑎, 𝑏)| | =
√
(𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 < 𝑟 =⇒ 𝑥 − 𝑎 < 𝑟 and 𝑦 − 𝑏 < 𝑟,

so (𝑥, 𝑦) ∈ 𝐵𝜖(𝑎) × 𝐵𝜙(𝑏) ⊆ 𝐴 × 𝐵. Since 𝑥, 𝑦 was arbitrary we have that 𝐵𝑟((𝑎, 𝑏)) is entirely
contained in 𝐴 × 𝐵, so 𝐴𝑜 × 𝐵𝑜 ⊆ (𝐴 × 𝐵)𝑜 .
For the other way, suppose (𝑎, 𝑏) ∈ (𝐴 × 𝐵)𝑜 , then there exist open ball 𝐵𝑟((𝑎, 𝑏)) ⊆ 𝐴 × 𝐵
for positive 𝑟. Consider the open balls 𝐵𝜖(𝑎) and 𝐵𝜙(𝑏), where 𝜖 = 𝜙 = 𝑟√

2
, we want

to show that they are subsets of 𝐴 and 𝐵, respectively. Take any (𝑥, 𝑦) ∈ 𝐵𝜖(𝑎) × 𝐵𝜙(𝑏),
| |(𝑥, 𝑦) − (𝑎, 𝑏)| | =

√
(𝑥 − 𝑎)2 + (𝑦 − 𝑏)2, since 𝑥 − 𝑎 < 𝑟√

2
and 𝑦 − 𝑏 < 𝑟√

2
, this implies

| |(𝑥, 𝑦) − (𝑎, 𝑏)| | <
√
𝑟2

2 + 𝑟2

2 = 𝑟,

so (𝑥, 𝑦) ∈ 𝐵𝑟((𝑎, 𝑏)), we can then conclude 𝐵𝜖(𝑎) × 𝐵𝜙(𝑏) ⊆ 𝐵𝑟((𝑎, 𝑏)), hence (𝐴 × 𝐵)𝑜 ⊆
𝐴𝑜 × 𝐵𝑜 , completing the proof.

2.2.3 Boundary

A point 𝑝 should be on the "edge" of a region 𝐴 if no matter how close we zoom into 𝑝, we can see
points inside 𝐴 and outside 𝐴. This leads to the definition of a boundary point.

Definition 2.2.10 let 𝐴 ⊆ R𝑛 be a set. A point 𝑝 ∈ R𝑛 is a boundary point of 𝐴 if
for every 𝜖 > 0, the sets 𝐵𝜖(𝑝) ∩𝐴 and 𝐵𝜖(𝑝) ∩𝐴𝑐 are both non-empty.

The collection of boundary points produces the concept of an "edge" of some set.

Definition 2.2.11 Let 𝐴 ⊆ R𝑛 be a set. The boundary of 𝐴, denoted 𝜕𝐴, is the set
of boundary points of 𝐴.

Here is a list of some examples of boundaries of sets. Let 𝑎 ∈ R𝑛 and 𝑟 > 0.

• The boundary of R𝑛 is empty.
• The boundary of any finite set 𝐴 is 𝐴 itself.
• The boundary of the closed interval [𝑐, 𝑑] is the finite set{𝑐, 𝑑}.
• The boundary of the open ball 𝐵𝑟(𝑎) is the sphere 𝜕𝐵𝑟(𝑎) = {𝑥 ∈ R𝑛 : | |𝑥 − 𝑎 | | = 𝑟}.
• The boundary of 𝐵1(0) is the unit sphere 𝜕𝐵1(0) = 𝑆𝑛−1.
• The boundary of any sphere is the sphere itself.
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Lemma 2.2.12 For any set 𝐴 ⊆ R𝑛 ,

𝐴𝑜 ∩ 𝜕𝐴 = ∅

Proof. Suppose not, then there exist 𝑥 ∈ 𝐴 such that 𝑥 ∈ 𝐴𝑜 and 𝑥 ∈ 𝜕𝐴, by definition, 𝑥 ∈ 𝐴𝑜

implies that there exist a open ball 𝐵𝑟(𝑥) ⊆ 𝐴, and 𝑥 ∈ 𝜕𝐴 implies that for all 𝑟′ > 0, 𝐵𝑟′(𝑥) ∩𝐴𝑐 ≠ ∅.
Clearly these two contradicts each other, hence the two sets are disjoint.

2.2.4 Closure

Defining limits on R𝑛 produces a new issue. Over R, when we try to find the limit of a point 𝑥,
we were satisfied by simply look at some open interval (𝑥 − 𝜖, 𝑥 + 𝜖) that belonged to that

function. However, this simplicity exists because there are only two ways of approaching a point
on the real number line: from the left or from the right.

This changes completely when we work with R𝑛 for 𝑛 ≥ 2,as we can approach a point in
infinitely many way. But first, how do we even know where we can take limits of some function

with domain 𝐴? As a result, we must determine which points in R𝑛 can be approached by points
only from 𝐴. Intuitively, this can be thought of as no matter how close we zoom into a point 𝑥, we

can see points in 𝐴 which are not 𝑥. Formally:

Definition 2.2.13 Let 𝐴 ⊆ R𝑛 be a set. A point 𝑝 ∈ R𝑛 is a limit point of 𝐴 if for
every 𝜖 > 0, the set 𝐵𝜖(𝑝)\{𝑝} ∩𝐴 ≠ ∅.

Here is a list of examples of sets of limit points. Let 𝑎 ∈ R𝑛 and 𝑟 > 0.

• The set of limit points of 𝑅𝑛 is 𝑅𝑛 .
• The set of limit points of any finite set is empty.
• The set of limit points of the open ball 𝐵𝑟(𝑎) is the closed ball {𝑥 ∈ R𝑛 : | |𝑥 − 𝑎 | | ≤ 𝑟}.
• The set of limit points of any sphere is the sphere itself.
• The set of limit points of any closed rectangle is the rectangle itself.

It is a good exercise to also prove that every interior point of 𝐴 is also a limit point of 𝐴.
It should not be a surprise that the set of limits points of 𝐴 might not contain 𝐴 itself, but

sometimes we may be interested in a new set which contains all points of 𝐴 along with its limit
points, as it has some nice properties, this leads to a new definition:

Definition 2.2.14 Let 𝐴 ⊆ R𝑛 . The closure of 𝐴, denoted 𝐴 or cl(𝐴), is the union
of the set 𝐴 and the set of limit points of 𝐴.

Here is a list of examples of closures. Let 𝑎 ∈ R𝑛 and 𝑟 > 0:
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• The closure of R𝑛 is R𝑛 = R𝑛 .

• The closure of any finite set is the set itself.

• The closure of the open ball 𝐵𝑟(𝑎) is the closed ball 𝐵𝑟(𝑎) = {𝑥 ∈ R𝑛 : | |𝑥 − 𝑎 | | ≤ 𝑟}.

• The closure of any sphere is the sphere itself.

• The closure of any closed rectangle is the rectangle itself.

• The closure of Q is Q = R.

Again, closure respects natural set operations.

Lemma 2.2.15 Let 𝐴 and 𝐵 be sets in R𝑛 . Then

• 𝐴 ⊆ 𝐴.
• 𝐴∪ 𝐵 = 𝐴∪ 𝐵.
• 𝐴∩ 𝐵 ⊆ 𝐴∩ 𝐵.
• 𝐴 × 𝐵 = 𝐴 × 𝐵.

Proof. The proof will be left as an exercise. These facts may be easier to prove once a alternate
definition of limit point is given in the next section.

Now that we have gone through the three important definitions of interior, boundary, and closure
of set. It should not be hard to see how they are related.

Lemma 2.2.16 Let 𝐴 ⊆ R𝑛 be a set, then

• 𝐴 = 𝐴𝑜 ∪ 𝜕𝐴.
• 𝜕𝐴 = 𝐴\𝐴𝑜 .

Proof. To prove the first statement, we first show 𝐴𝑜 ∪ 𝜕𝐴 ⊆ 𝐴𝑜 . Since 𝐴𝑜 ⊆ 𝐴 ⊆ 𝐴, it suffices to
show that 𝜕𝐴\𝐴 ⊆ 𝐴. Take 𝑝 ∈ 𝜕𝐴 with 𝑝 ∉ 𝐴. By definition, for all 𝜖 > 0, the set 𝐵𝜖(𝑝)\{𝑝}
contains points in 𝐴, hence 𝑝 ∈ 𝐴. This proves 𝐴𝑜 ∪ 𝜕𝐴 ⊆ 𝐴.
For the other direction, we prove by showing 𝐴 ⊆ 𝐴𝑜 ∪ 𝜕𝐴 and 𝐴\𝐴 ⊆ 𝜕𝐴. Fix 𝑝 ∈ 𝐴, if there exist
𝜖 > 0 such that 𝐵𝜖(𝑝) ⊆ 𝐴 then 𝑝 ∈ 𝐴𝑜 . Otherwise, for every 𝜖 > 0, the ball 𝐵𝜖(𝑝) is not a subset of
𝐴, however 𝐵𝜖(𝑝) ∩𝐴 is not empty as it contains 𝑝 ∈ 𝐴. Therefore, for every 𝜖 > 0, both 𝐵𝜖(𝑝) ∩𝐴
and 𝐵𝜖(𝑝) ∩ 𝐴𝑐 so 𝑝 ∈ 𝜕𝐴. Now fix 𝑞 ∈ 𝐴 with 𝑞 ∉ 𝐴. By definition of a limit point, for every
𝜖 > 0, the punctured open ball 𝐵𝜖(𝑞)\{𝑞} contains points in 𝐴, moreover 𝐵𝜖(𝑞) ∩ 𝐴𝑐 is non-empty
for every 𝜖 since 𝑞 ∈ 𝐴𝑐 . Therefore, 𝑞 ∈ 𝜕𝐴 which proves that 𝐴\𝐴 ⊆ 𝜕𝐴, finishing the proof. The
second statement follows quickly from the first.
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2.3 Sequences

We have seen a description of limit points in terms of open balls, there are also equivalent
definitions using sequences which some might find more intuitive.

Definition 2.3.1 A sequence in R𝑛 is a function with domain {𝑘 ∈ Z : 𝑘 ≥ 𝑘0} for
some fixed 𝑘0 ∈ Z and codomain R𝑛 .

As with sequences in R, we can specify what it means to "pick terms from a sequence".

Definition 2.3.2 Let 𝑥 : N+ → R𝑛 be a sequence and let 𝑚 : N+ → N+ be s strictly
increasing function. The sequence {𝑥(𝑚(𝑘))}∞

𝑘=1 is a subsequence of the sequence
{𝑥(𝑘)}∞

𝑘=1.

Remark 2.3.3 With this definition, the domains of 𝑥 and 𝑚 can be modified to
allow for subsets of Z which are not N+, however the codomain of 𝑚 must be a
subset of the domain of 𝑥.

2.3.1 Convergence of sequences

We can view sequences in a way where each term 𝑥(𝑘) represents a finite approximation to some
desired value, and the next term 𝑥(𝑘 + 1) is usually a refined version of the previous term, so

intuitively, the limit of the sequence exists if and only we can refine these approximations to any
arbitrary accuracy.

Definition 2.3.4 Let {𝑥(𝑘)}𝑘 be a sequence in R𝑛 . Then {𝑥(𝑘)} converges if there
exist 𝑝 ∈ R𝑛 for which

∀𝜖 > 0,∃𝐾 ∈ N 𝑠.𝑡. ∀𝑘 ∈ N, 𝑘 ≥ 𝐾 =⇒ ||𝑥(𝑘) − 𝑝 | | < 𝜖.

If the above holds, we write 𝑙𝑖𝑚𝑘→∞𝑥(𝑘) = 𝑝 or equivalently 𝑥(𝑘) → 𝑝. Otherwise,
the sequence diverges.

Example 2.3.5 The sequence {𝑥(𝑘)}∞
𝑘=1 given by 𝑥(𝑘) =

(
2+ 1

𝑘
, sin 𝑘

𝑘

)
converges to

(2, 0).
Proof. Let 𝜀 > 0 be arbitrary. Take 𝐾 to be any natural number greater than

√
2/𝜀.

For any 𝑘 ∈ N, if we assume 𝑘 ≥ 𝐾, then:
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∥𝑥(𝑘) − 𝑝∥ =




(2+ 1

𝑘
, sin 𝑘
𝑘

)
− (2, 0)





 =
√(

2+ 1
𝑘
− 2

)2
+
(
sin 𝑘
𝑘

)2

=

√
1+ sin2 𝑘

𝑘2 ≤
√

2
𝑘2 < 𝜖

so ∥𝑥(𝑘) − 𝑝∥ < 𝜀. By the definition, lim𝑘→∞ 𝑥(𝑘) = 𝑝 as desired.

Convergence of sequences has a geometric interpretation with shrinking balls in R𝑛 .

A sequence {𝑥(𝑘)}𝑘 in R𝑛 converges to 𝑥 if every open ball centred at 𝑥 contains infinitely many points of
the sequence {𝑥(𝑘)}𝑘 .

We have had many scenarios where we split up vectors in R𝑛 and instead look at each component,
this is no different for sequences. A sequence in R𝑛 can be thought of as 𝑛 sequences in R, where
we write

𝑥(𝑘) = (𝑥1(𝑘), 𝑥2(𝑘), ..., 𝑥𝑛(𝑘)) ∈ R𝑛

so the 𝑛 sequences in R are given by {𝑥1(𝑘)𝑘 , ..., {𝑥𝑛(𝑘)}𝑘}. This allows you to connect the notions
of convergence between R and R𝑛 .

Lemma 2.3.6 Let {𝑥(𝑘)}𝑘 be a sequence in R𝑛 with 𝑥(𝑘) = (𝑥1(𝑘), ..., 𝑥𝑛(𝑘)). Fix
𝑝 = (𝑝1, ..., 𝑝𝑛) ∈ R𝑛 . The sequences {𝑥(𝑘)}𝑘 converges to 𝑝 if and only if {𝑥𝑖(𝑘)}𝑘
converges to 𝑝𝑖 for all 𝑖 = 1, 2, ..., 𝑛.

Proof. ⇒ Assume {𝑥(𝑘)}𝑘 converges to 𝑎 = (𝑎1, ..., 𝑎𝑛) ∈ R𝑛 . Fix 𝑖 ∈ {1, ...., 𝑛} and fix 𝜖 > 0. It
suffices to show that 𝑥𝑖(𝑘) → 𝑎𝑖 as 𝑘 → ∞. Since 𝑥(𝑘) → 𝑎, there exists 𝐾 ∈ N such that

𝑘 ≥ 𝐾 → ||𝑥(𝑘) − 𝑎 | | < 𝜖.

Take this 𝐾 and let 𝑘 ∈ 𝑁 satisfy 𝑘 ≥ 𝐾. Then

|𝑥𝑖(𝑘) − 𝑎𝑖 | =
√
|𝑥𝑖(𝑘) − 𝑎𝑖 |2 ≤

√
|𝑥1(𝑘) − 𝑎1 |2 + · · · + |𝑥𝑛(𝑘) − 𝑎𝑛 |2 = | |𝑥(𝑘) − 𝑎 | | < 𝜖

Since 𝜖 and 𝑖 was arbitrary, this proves the desired implication.
⇐ Assume {𝑥𝑖(𝑘)} converges for all 𝑖 = 1, 2, ..., 𝑛. For each 𝑖 ∈ {1, 2, ..., 𝑛}, let 𝑎𝑖 ∈ R be the limit of
{𝑥𝑖(𝑘)}𝑘 . Let 𝑎 = (𝑎1, ..., 𝑎𝑛) ∈ R𝑛 . It suffices to prove that 𝑥(𝑘) → 𝑎. Let 𝜖 > 0. For 𝑖 ∈ {1, ..., 𝑛},
since 𝑥𝑖(𝑘) → 𝑎𝑖 , there exists 𝐾𝑖 ∈ N such that

𝑘 ≥ 𝐾𝑖 =⇒ |𝑥𝑖(𝑘) − 𝑎𝑖 | <
𝜖√
𝑛
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Take 𝐾 = max{𝐾1, ...,𝐾𝑛}, then

| |𝑥(𝑘) − 𝑎 | | =
√
|𝑥1(𝑘) − 𝑎𝑖 |2 + · · · + |𝑥𝑛(𝑘) − 𝑎𝑛 |2 ≤

√
𝑛 max

1≤𝑖≤𝑛
|𝑥𝑖(𝑘) − 𝑎𝑖 |2 < 𝜖,

as 𝑘 ≥ 𝐾 ≥ 𝐾𝑖 for all 𝑖 = 1, ..., 𝑛. This completes the proof.

Using this lemma, limit laws in R𝑛 can be proved by appealing to the limit laws in R instead of
directly through the formal definition of the limit.

2.3.2 Limit points, boundary points, and interior points

A sequence of points {𝑥(𝑘)}𝑘 ∈ R𝑛 often arises in optimization or search algorithms. In these
cases, the approximations may only naturally lie in a particular set 𝐴 ⊆ R𝑛 such as the domain of
the optimizing function. Sometimes these approximations will converge to a point inside your set
𝐴, i.e. the interior of 𝐴. Sometimes the limit of this sequence may ’fall outside’ of the set 𝐴, i.e.

the boundary of 𝐴. This perspective leads to an equivalent formulation for limit points.

Lemma 2.3.7 Let 𝐴 ⊆ R𝑛 be a set. A point 𝑝 ∈ R𝑛 is a limit point of 𝐴 if and only
if there exists a sequence of points in 𝐴\{𝑝} which converges to 𝑝.

This lemma makes it quite easy to exhibit limit points in explicit examples.

Example 2.3.8 Let 𝐴 =
{
(𝑥, 𝑦) ∈ R2 : 1 ≤ 𝑥2 + 𝑦2 < 2

}
∪ {(0, 0)}. You can quickly

check that (1, 1) is a limit point of 𝐴 using the sequential definition. Define the
sequence

𝑥(𝑘) =
(
1− 1

4𝑘 , 1− 1
4𝑘

)
for 𝑘 ≥ 1 so 𝑥(𝑘) → (1, 1) as 𝑘 → ∞ by Lemma 2.3.14. Moreover, 𝑥(𝑘) ∈ 𝐴\{(1, 1)}
since for 𝑘 ≥ 1,

2 >

(
1− 1

4𝑘

)2
+
(
1− 1

4𝑘

)2
≥ 2

(
3
4

)2
> 1.

Thus, (1, 1) is a limit point of 𝐴 by Lemma 2.3.17.
A similar argument can work for the limit point (−1, 0). On the other hand, (0, 0)
and (3, 0) are not limit points of 𝑆 but how would you prove it? Try the definition
with open balls instead.

Proof. ⇐ Let {𝑥(𝑘)}𝑛 be a sequence of points in𝐴\{𝑝} which converge to 𝑝. Fix 𝜖 > 0. By definition
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of convergence, there exists 𝐾 ∈ N such that

∀𝑘 ∈ N, 𝑘 ≥ 𝐾 =⇒ ||𝑥(𝑘) − 𝑝 | | < 𝜖

Then 𝑥(𝑘) ∈ 𝐵𝜖(𝑝), and by assumption 𝑥(𝑘) ∈ 𝐴\{𝑝}. Thus 𝐵𝜖(𝑝)\{𝑝} contains points of 𝐴, and so
𝑝 is a limit point of 𝐴.
⇒ Assume 𝑝 ∈ R𝑛 is a limit point of 𝐴. It suffices to construct a sequence {𝑥(𝑘)}𝑘 such that
∀𝑘 ∈ N, 𝑥(𝑘) ∈ 𝐴\{𝑝} and 𝑥(𝑘) → 𝑃. For each 𝑘 ∈ N+, choose a point 𝑥(𝑘) ∈ 𝐵1/𝑘(𝑝) ∩ 𝐴 with
𝑥(𝑘) ≠ 𝑝, such a point exists by assumption. It remains to show that 𝑥(𝑘) → 𝑝 as 𝑘 → ∞. Fix 𝜖 > 0.
Take 𝐾 = ⌈ 1

𝜖 ⌉. Let 𝑘 ∈ N satisfy 𝑘 ≥ 𝐾. Then

| |𝑥(𝑘) − 𝑝 | | < 1
𝑘
≥ 1
𝐾
𝑙𝑒𝑞𝜖.

This completes the proof.

Lemma 2.3.9 Let 𝐴 ⊆ R𝑛 be a set. Let 𝑝 ∈ R𝑛 be a point.

• The point 𝑝 is an interior point of 𝐴 if and only if for every sequence {𝑥(𝑘)}𝑘
of points converging to 𝑝, there exists 𝐾 ∈ N+ such that {𝑥(𝑘)}∞

𝑘=𝐾
⊆ 𝐴.

• The point 𝑝 is a boundary point of 𝐴 if and only if there exists a sequence
of points in 𝐴 converging to 𝑝 and there exists a sequence of points in 𝐴𝑐

converging to 𝑝.

Proof. This is left as an exercise. The ideas are similar to the proof of the last lemma.

In summary, these definitions are just another tool for verifying whether a point lies on the
boundary or interior. Sometimes the sequential definitions are easier, and sometimes the open ball
definitions are easier.

2.4 Open sets and closed sets

Given a set 𝐴 ⊆ R𝑛 , we will often only consider sequences converging to points inside 𝐴. For
example, if the set 𝐴 is the domain of a map, we may want a sequence of approximations {𝑥(𝑘)}𝑘
lying inside 𝐴 to converge to a points 𝑝 within the domain 𝐴. Otherwise, we cannot necessarily
evaluate the map at the point 𝑝. We can ensure this feature in two different ways:

1. If a sequence in R𝑛 converges to 𝑎 ∈ 𝐴, then the tail of the sequence belongs to 𝐴.

2. If a sequence in 𝐴 converges to 𝑎 ∈ R𝑛 , then 𝑎 must belong to 𝐴.

Many sets 𝐴 will not satisfy either property, so each of these two properties of sets in R𝑛 warrants
their own definitions.
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2.4.1 Open sets

First, lets define a set which satisfy the following.

If a sequence in R𝑛 converges to 𝑎 ∈ 𝐴, then the tail of the sequence belongs to 𝐴.

In other words, no matter how we approach 𝑎 ∈ 𝐴 we must eventually lie inside 𝐴. That’s
precisely the sequential definition of an interior point! This suggests a definition.

Definition 2.4.1 A set 𝐴 ⊆ R𝑛 is open if every point of 𝐴 is an interior point of 𝐴.

If 𝑎 is an interior point of 𝐴, then we can approach 𝑎 however we want. On the other hand, if 𝑎 is a
boundary point of 𝐴 then we can only approach 𝑎 along certain sequences while still lying inside
𝐴, that is, the set 𝐴 restrict on how the sequence can approach a boundary point 𝑎. Some examples
to remember:

• The empty set ∅ is vacuously open.
• The set R𝑛 is open.
• For 𝑎, 𝑏 ∈ R with 𝑎 < 𝑏, the open interval (𝑎, 𝑏) in R is open.
• For 𝑝 ∈ R𝑛 and 𝑟 > 0, the open ball {𝑥 ∈ R𝑛 : | |𝑥 − 𝑝 | | < 𝑟} in R𝑛 is open.

Example 2.4.2 The set 𝐴 = {(𝑥, 𝑦) ∈ R2 : 𝑦 > 1} is open.

Proof. Let (𝑎, 𝑏) ∈ 𝐴 be given. Fix 𝑟 = 𝑏−1
2 so (𝑎, 𝑏) ∈ 𝐴 implies 𝑟 > 0. It suffices to

show that 𝐵𝑟((𝑎, 𝑏)) ⊆ 𝐴. For (𝑥, 𝑦) ∈ 𝐵𝑟((𝑎, 𝑏)), it follows that

|𝑦 − 𝑏 | ≤ ||(𝑥, 𝑦) − (𝑎, 𝑏)| | < 𝑟 =⇒ |𝑦 − 𝑏 | < 𝑏 − 1
2

=⇒ 𝑏 − 𝑏 − 1
2 < 𝑦 < 𝑏 + 𝑏 − 1

2

=⇒ 𝑦 >
𝑏 + 1

2 > 1

Therefore, (𝑥, 𝑦) ∈ 𝐴, which proves that 𝐵𝑟((𝑎, 𝑏)) is contained in 𝐴, as desired.

Lemma 2.4.3 The interior of a set 𝐴 ⊆ R𝑛 is open.

Proof. Let 𝑎 ∈ 𝐴𝑜 . By definition, there exists 𝜖 > 0 such that 𝐵𝜖(𝑎) ⊆ 𝐴. Fix 𝑥 ∈ 𝐵𝜖(𝑎), it suffices
to show that 𝑥 ∈ 𝐴𝑜 . Since the open ball 𝐵𝜖(𝑎) is open and 𝑥 ∈ 𝐵𝜖(𝑎), there exists 𝛿 > 0 such that
𝐵𝛿(𝑥) ⊆ 𝐵𝜖(𝑎) As 𝐵𝜖(𝑎) ⊆ 𝐴, it follows that 𝐵𝛿(𝑥) ⊆ 𝐴 so 𝑥 ∈ 𝐴𝑜 .

This gives rise to equivalent definitions of an open set.
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Lemma 2.4.4 Let 𝐴 ⊆ R𝑛 . The following are equivalent:

1. 𝐴 is open.
2. 𝐴 = 𝐴𝑜 .
3. 𝐴∩ 𝜕𝐴 = ∅.

Proof. Suppose first 𝐴 is open, then by definition every point of 𝐴 is an interior point of 𝐴, so
𝐴 ⊆ 𝐴𝑜 , clearly 𝐴𝑜 ⊆ 𝐴 hence 𝐴 = 𝐴𝑜 . Now assume 𝐴 = 𝐴𝑜 , then in previous sections we’ve
shown that the interior and boundary of a set is disjoint, hence 𝐴 ∩ 𝜕𝐴 = ∅, as required. Lastly,
assume 𝐴 ∩ 𝜕𝐴 = ∅, since every point in 𝐴 is either a boundary point or an interior point, this
implies that 𝐴 does not contain any boundary points, hence 𝐴 is open.

Example 2.4.5 Consider the interval 𝐼 = [137, 237) in R. The point 137 is a boundary
point of 𝐼 because the sequence

{
137+ 1

𝑘

}∞
𝑘=1 in 𝐼, and the sequence

{
137− 1

𝑘

}∞
𝑘=1 in

𝐼𝑐 both converge to 137. Therefore, 137 ∈ 𝐼 ∩ 𝜕𝐼 so 𝐼 ∩ 𝜕𝐼 is non-empty. By Lemma
2.4.5, 𝐼 is not open.

2.4.2 Closed sets

If we want to define a property of a set 𝐴 ⊆ R𝑛 satisfying the following.

If a sequence in 𝐴 converges to a point 𝑎 ∈ R𝑛 , then 𝑎 ∈ 𝐴.

In other words, 𝐴 must contain all of its limit points. This suggest the following definition:

Definition 2.4.6 A set 𝐴 ⊆ R𝑛 is closed if every limit point of 𝐴 belongs to 𝐴.

Some common examples of closed sets are:

1. The empty set ∅ is vacuously closed.
2. The set R𝑛 is closed.
3. For 𝑎, 𝑏 ∈ R with 𝑎 < 𝑏, the closed interval [𝑎, 𝑏] in R is closed.
4. For 𝑝 ∈ R𝑛 and 𝑟 > 0, the closed ball {𝑥 ∈ R𝑛 : | |𝑥 − 𝑝 | | ≤ 𝑟} is closed.

Example 2.4.7 The set 𝐴 = {(𝑥, 𝑦) ∈ R2 : 𝑦 ≥ 1} is closed. To prove this, let (𝑎, 𝑏) be
a limit point of 𝐴, then there exist a sequence {𝑥(𝑘), 𝑦(𝑘)}𝑘 in 𝐴\{(𝑎, 𝑏)} converging
to (𝑎, 𝑏), so 𝑥(𝑘) → 𝑎 and 𝑦(𝑘) → 𝑏. As 𝑦(𝑘) ≥ 1 for all 𝑘 ∈ N and 𝑦(𝑘) → 𝑏, it
follows by a limit law over R that 𝑏 = lim𝑥→∞ 𝑦(𝑘) ≥ 1. Thus (𝑎, 𝑏) ∈ 𝐴.

Closed sets are often produced via the closure.
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Lemma 2.4.8 The closure of a set 𝐴 is closed.

Proof. Let 𝑝 be a limit point of 𝐴. Then there exist a sequence {𝑥(𝑘)}∞
𝑘=1 in 𝐴\{𝑝} converging to 𝑝.

For each 𝑘 ∈ N+, 𝑥(𝑘) ∈ 𝐴 implies that there exists 𝑦(𝑘) ∈ 𝐴 satisfying | |𝑥(𝑘) − 𝑦(𝑘)| | < 1
𝑘
. Thus, it

suffices to show that the sequence {𝑦(𝑘)}∞
𝑘=1 in 𝐴 converges to 𝑝, which implies that 𝑝 is a limit of

𝐴, which implies 𝑝 ∈ 𝐴.
Fix 𝜖 > 0, as 𝑥(𝑘) → 𝑝, there exists 𝐾 ∈ N such that

∀𝑘 ∈ N, 𝑘 ≤ 𝐾 =⇒ ||𝑥(𝑘) − 𝑝 | | < 𝜖
2 .

Set 𝐾′ = max{𝐾, ⌈ 2
𝜖 ⌉}. By the triangle inequality, for 𝑘 ∈ N with 𝑘 ≥ 𝐾′,

| |𝑦(𝑘) − 𝑝 | | = | |𝑦(𝑘) − 𝑥(𝑘) + 𝑥(𝑘) − 𝑝 | | ≤ ||𝑦(𝑘) − 𝑥(𝑘)| | + ||𝑥(𝑘) − 𝑝 | |

<
1
𝑘
+ 𝜖

2

≤ 1
𝐾′ +

𝜖
2 ≤ 𝜖.

Hence, 𝑦(𝑘) → 𝑝 as required.

Lemma 2.4.9 Let 𝐴 ⊆ R𝑛 , then the following are equivalent:

1. 𝐴 is closed.
2. 𝐴 = 𝐴.
3. 𝜕𝐴 ⊆ 𝐴.

Proof. This is left as an exercise.

2.5 Set operations

Lemma 2.5.1 A set 𝐴 ⊆ R𝑛 is open if and only if its complement 𝐴𝑐 = R𝑛\𝐴 is
closed.

Proof. Assume 𝐴 ⊆ R𝑛 is an open set. let 𝑝 be a limit point of the complement 𝐴𝑐 , so there exists
a sequence {𝑥(𝑘)}∞

𝑘=1 in 𝐴𝑐\{𝑝} satisfying 𝑥(𝑘) → 𝑝. Since 𝐴 is open, if 𝑝 ∈ 𝐴 then the tail of this
sequence must lie in 𝐴 which is impossible since 𝑥(𝑘) ∈ 𝐴𝑐 for all 𝑘 ≥ 1 for all 𝑘 ∈ N. Therefore, 𝑝
must lie in the complement R𝑛\𝐴 = 𝐴𝑐 . This shows 𝐴𝑐 is closed.
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2.5. Set operations

Conversely, assume 𝐵 = 𝐴𝑐 is a closed set, so we must show 𝐵𝑐 = 𝐴 is open. Let 𝑝 ∈ 𝐵𝑐 be arbitrary.
Since 𝐵 is closed, the point 𝑝 cannot be a limit point of 𝐵. Therefore, there exists 𝜖 > 0 such that
𝐵𝜖(𝑝)\{𝑝} does not contain any points of 𝐵. In other words, 𝐵𝜖(𝑝)\𝑝 ⊆ 𝐵𝑐 , since 𝐵 is closed, we can
deduce 𝐵𝜖(𝑝) ⊆ 𝐵𝑐 . This shows that 𝑝 is an interior point of 𝐵𝑐 and so 𝐵𝑐 is open.

Example 2.5.2 The empty set ∅ and the set R𝑛 are both open and closed in R𝑛 ,
which is sometimes called clopen. They are also the only two clopen sets in 4R𝑛 .

Example 2.5.3 There are examples of sets which are neither open nor closed:

• The interval [13, 237) is neither open nor closed as shown in previous exam-
ples.

• The set 𝐴 = { 1
𝑛 : 𝑛 ∈ N} is neither open nor closed. It is not open because

any open ball around any point is not contained in the set, it is not closed
because 0 is a limit point and does not belong to 𝐴.

• The set 𝐵 = {(𝑥, 𝑦) ∈ R2 : 𝑥2 + 𝑦2 < 1, 𝑦 ≥ 0} is the upper half of an open
disk, including the points along the 𝑥-axis. It is not open because (0, 0) is not
an interior point, and it is not closed because (0, 1) is a boundary point that
does not belong to 𝐵.

• The set of rationals Q is neither open nor closed since its interior Q𝑜 = ∅ and
its closure Q = R are not equal to Q.

Open sets and closed sets respect other basic set operations, too.

Lemma 2.5.4 Lemma 2.4.18 All of the following are true for sets in R𝑛 :

1. A finite intersection of open sets is open.
2. A finite or infinite union of open sets is open.
3. A finite union of closed sets is closed.
4. A finite or infinite intersection of closed sets is closed.
5. A finite Cartesian product of open sets is open.
6. A finite Cartesian product of closed sets is closed.

Proof. TBD
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Example 2.5.5 An infinite intersection of open sets may not necessarily be open,
such as:
-
⋂

𝜀>0(−𝜀, 𝜀). This is equal to the singleton {0}, which is not open.
-
⋂∞
𝑛=1

(
0, 1+ 1

𝑛

)
. This is equal to (0, 1], which is not open.

An infinite union of closed sets may not necessarily be closed, such as:
-
⋃

0<𝜀<1[−𝜀, 𝜀]. This is equal to the interval (−1, 1), which is not closed.
-
⋃∞
𝑛=1

[
0, 1− 1

𝑛

]
. This is equal to [0, 1), which is not closed.

2.6 Compact sets

Suppose a set 𝐴 ⊆ R𝑛 is the domain of a real-valued function 𝑓 and we want to determine its
maximum value, but how do we find it? We can try constructing a sequence of points {𝑥(𝑘)}∞

𝑘=1
in 𝐴, where each value 𝑓 (𝑥(𝑘)) is attempting to approximate the maximum value of 𝑓 . Ideally, we
want the sequence to converge to some point 𝑝 inside 𝐴, but there are two critical issues:

• How can we ensure that the sequence in 𝐴 converges to a point 𝑝 ∈ R𝑛?

• How can we ensure that 𝑝 ∈ 𝐴?

From last section, we have successfully addressed the second question by assuming the set 𝐴 is
closed, but it is unfortunately not enough for the first point.

Example 2.6.1 Consider the closed set 𝐴 = [−1, 1]. The sequence 𝑥(𝑘) = (−1)𝑘 for
𝑘 ∈ N+ lying in 𝐴 does not converge. On the other hand, notice that 𝑥(2𝑘) = 1 for
all 𝑘 ∈ N+ so the subsequence of even terms 𝑥(2), 𝑥(4), ... converges to 1 ∈ 𝐴.
Consider the closed set 𝐵 = [0,∞). The sequence 𝑦(𝑘) = 2𝑘 for 𝑘 ∈ N+ lying in
𝐵 does not converge and, no matter how we pick terms from this sequence, we
cannot form a subsequence which will converge. This is because 𝐵 is not bounded,
so the terms of the sequence 𝑥(𝑘) can always stay far apart.

As seen above, we can always construct an "alternating" sequence like the example above which
will not converge in a closed set. However, we can indeed pick infinitely terms from a sequence
and form a new subsequence which will converge. If our set 𝐴 has the property that ew can always
do this for any sequence in 𝐴, then we will have addressed the first question!

2.6.1 Definitions of compactness

Definition 2.6.2 A set 𝐴 ⊆ R𝑛 is compact if every sequence of 𝐴 has a subsequence
which converges to a point lying inside 𝐴
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Example 2.6.3 Here are some common examples of non-compact sets.

• The interval 𝐴 = (0, 1] in R is not compact. Verify this with the sequence{ 1
𝑘

}∞
𝑘=1 since it (and any subsequence) converges to 0 which does not belong

to 𝐴 = (0, 1].
• The set 𝐵 =

{ 1
𝑛 : 𝑛 ∈ N

}
in R is not compact for the same reason as 𝐴.

• The set R𝑛 is not compact since, for example, the sequence 𝑥(𝑘) = (𝑘, 𝑘, . . . , 𝑘)
and any subsequence of it does not converge.

• The unit open ball 𝐵1(0) in R𝑛 is not compact because you can construct a
sequence which converges to a point on the unit sphere 𝜕𝐵1(0) = 𝑆𝑛−1.

These non-examples illustrate two necessary conditions for compactness: closed and bounded.

Definition 2.6.4 A set 𝐴 ⊆ R𝑛 is bounded if ∃𝑅 > 0 such that 𝐴 ⊆ {𝑥 ∈ R𝑛 : | |𝑥 | | <
𝑅}. A set that is not bounded is called unbounded.

If a set 𝐴 is unbounded, then it cannot be compact as we can construct a sequence {𝑥(𝑘)}𝑘 lying in
𝐴 such that | |𝑥(𝑘)| | → ∞, which implies that the terms will never get close to each other, and so no
subsequence can converge.

Example 2.6.5 Here are some examples of compact sets. r

• The empty set ∅ is vacuously compact.
• Any finite set 𝐴 is compact since some elements in 𝐴 must repeat infinitely

often, and we can simply choose this constant subsequence.
• The close interval [𝑎, 𝑏] in R is compact.

These examples illustrate the difficult of verifying whether a set 𝐴 is compact by definition, bu
luckily, there is a natural equivalent definition of compactness that is much easier to see.

Theorem 2.6.6 (Bolzano-Weierstrass) A set in R𝑛 is compact if an only if it is both
closed and bounded.

Proof. ⇒ First assume 𝐴 ⊆ R𝑛 is compact. To show 𝐴 is closed, let 𝑝 be a limit point of 𝐴, there
exists a sequence {𝑥(𝑘)𝑘} lying in 𝐴 such that 𝑥(𝑘) → 𝑝, then any subsequence of {𝑥(𝑘)𝑘} must
therefore converge to 𝑝 as well. Since 𝐴 is compact, this implies 𝑝 ∈ 𝐴 and hence 𝐴 is closed.
Second, we show 𝐴 is bounded by contrapositive. If 𝐴 is not bounded, then ∀𝑘 ∈ N+, the set 𝐴
is not a subset of 𝐵𝑘(0). Using this, we can construct a sequence so that each 𝑥(𝑘) ∈ 𝐴 has the
property | |𝑥(𝑘)| | > 𝑘. Let {𝑥(𝑚(𝑘))}𝑘 be any subsequence of {𝑥(𝑘)}𝑘 with 𝑚 a strictly increasing
function. It suffices to show that {𝑥(𝑚(𝑘))} does not converge to any point in R𝑛 . Fix 𝑝 ∈ R𝑛 , we
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need to prove that

∃𝜖 > 0 𝑠.𝑡. ∀𝐾 ∈ N+,∃𝑘 ∈ N+ 𝑠.𝑡. 𝑘 ≥ 𝐾 and | |𝑥(𝑚(𝑘)) − 𝑝 | | ≥ 𝜖.

Take 𝜖 = 1 and let 𝐾 ∈ N+. Since 𝑚(𝑘) is a strictly increasing function, set 𝑘 to be large enough so
that 𝑚(𝑘) > 𝐾 and 𝑚(𝑘) − ||𝑝 | | ≥ 1, then | |𝑥(𝑚(𝑘))| | > 𝑚(𝑘) by construction of 𝑥. By rearranging
the triangle inequality, we see by our choice of the sequence 𝑥 that

| |𝑥(𝑚(𝑘)) − 𝑝 | | ≥ ||𝑥(𝑚(𝑘))| | − ||𝑝 | | > 𝑚(𝑘) − ||𝑝 | | ≥ 1 = 𝜖

This shows that 𝑥(𝑚(𝑘)) does not converge to 𝑝, as required. Since the subsequence and point 𝑝
were arbitrary, the set 𝐴 is not compact. This completes the proof of this direction.
⇐ Assume 𝐴 ⊆ R𝑛 is closed and bounded. Let {𝑥(𝑘)}𝑘 be a sequence lying in 𝐴. We claim
that {𝑥(𝑘)}𝑘 has a convergent subsequence, which means we must prove that this subsequence
converges to a point 𝑝 in 𝐴, and since 𝐴 is closed, this would prove 𝐴 is compact.
Express the sequence 𝑥(𝑘) = (𝑥1(𝑘), ..., 𝑥𝑛(𝑘)) in terms of its components, so 𝑥𝑖(𝑘) ∈ R for all 𝑘 ∈ N+

and all 𝑖 ∈ {1, ..., 𝑛}. For 𝑖 ∈ {1, ..., 𝑛}, we show that each sequence {𝑥𝑖(𝑘)}𝑘 of real numbers is
bounded in R. Since 𝐴 is bounded, there exists 𝑅 > 0 such that 𝐴 ⊆ 𝐵𝑅(0), so ∀𝑎 ∈ 𝐴, we have
| |𝑎 | | < 𝑅. Writing 𝑎 = (𝑎1, ..., 𝑎𝑛), it follows that |𝑎𝑖 | ≤ ||𝑎 | | < 𝑅 for all 𝑖 ∈ {1, ..., 𝑛}. This implies
that 𝐴 ⊆ (−𝑅,𝑅)𝑛 so 𝑥(𝑘) ∈ (−𝑅,𝑅)𝑛 for every 𝑘 ∈ N+. Thus each coordinate sequence is bounded
within (−𝑅,𝑅). Since ever bounded sequence in R has a convergent subsequence, we get that the
first coordinate sequence {𝑥1(𝑘)}𝑘 in R has a convergent subsequence, say {𝑥1(𝑚1(𝑘)))}𝑘 for some
strictly increasing function𝑚1,converging to some real number 𝑝1 ∈ R. Then the second coordinate
sequence also has subsequence {𝑥2(𝑚1(𝑘))}𝑘 in R which is bounded. Thus this subsequence has
a convergent subsequence {𝑥2(𝑚2(𝑘))}𝑘 where 𝑚2 is a strictly increasing function whose range
lies in side the range of 𝑚1. Sine any subsequence of a convergent sequence still converges, so
𝑥1(𝑚2(𝑘)) → 𝑝1 as 𝑘 → ∞.
Repeat this process for all the coordinates, which ultimately gives us a strictly increasing function
𝑚𝑛 and real numbers 𝑝1, ..., 𝑝𝑛 ∈ R such that

∀𝑖 ∈ {1, ..., 𝑛}, 𝑥𝑖(𝑚𝑛(𝑘)) → 𝑝𝑖 as 𝑘 → ∞.

This implies that the subsequence {𝑥(𝑚𝑛(𝑘))}𝑘 converges to 𝑝 = (𝑝1, ..., 𝑝𝑛) ∈ R𝑛 , which completes
the proof.

Example 2.6.7 Going back to the interval [𝑎, 𝑏] with 𝑎 < 𝑏. Clearly it is both
bounded and closed, so it is compact. [𝑎,∞), (𝑎, 𝑏), (−∞, 𝑏) are all not compact as it
is either not closed or not bounded.
Fix 𝑟 > 0 and 𝑎 ∈ R. The open ball 𝐵𝑟(𝑎) is not closed so it is not compact. The
closed ball 𝐵𝑟(𝑎) and the sphere 𝜕𝐵𝑟(𝑎) are both closed anc bounded, so they are
compact.
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2.6.2 Set operations and subsets

Like open and closed sets, compact sets respect set operations.

Lemma 2.6.8 All of the following are true for sets in R𝑛 .

1. A finite union of compact sets is compact.
2. A finite or infinite intersection of compact sets is compact.
3. A finite Cartesian product of compact sets is compact.

Proof. This is left as an exercise, we have to verify that each statement is true if we replace every
instance of "compact" with "bounded". Then this follows from previous lemmas.

Lemma 2.6.9 Let 𝐴 be a compact set in R𝑛 . If 𝐵 ⊆ 𝐴 and 𝐵 is closed then 𝐵 is
compact.

Proof. This follows directly from the Bolzano-Weierstrass theorem but we can also give a proof
from the definition of compactness. Let {𝑥(𝑘)}𝑘 be a sequence in 𝐵. Since 𝐵 ⊆ 𝐴, the sequence also
lies in 𝐴. By the compactness of 𝐴, it has a subsequence {𝑥(𝑚(𝑘))}𝑘 converging to some 𝑝 ∈ 𝐴,
now this subsequence must also lies in 𝐵, and since 𝐵 closed and 𝑥(𝑚(𝑘)) → 𝑝, this implies 𝑝 ∈ 𝐵.
Hence, 𝐵 is compact.

Example 2.6.10 Consider the following subset of R3 :

𝑆 =
{
(𝑥, 𝑦, 𝑧) ∈ R3 : 1 ≤ 𝑥2 + 𝑦2 ≤ 2,−1 ≤ 𝑧 ≤ 1

}
Intuitively, this is a hollowed out cylinder in R3. You can prove that this is a
compact set using the above two lemmas. First, the set

𝐴 =
{
(𝑥, 𝑦) ∈ R2 : 1 ≤ 𝑥2 + 𝑦2 ≤ 2

}
is a closed subset of the closed ball

{
(𝑥, 𝑦) ∈ R2 : 𝑥2 + 𝑦2 ≤ 2

}
, hence 𝐴 is compact

in R2. The closed interval 𝐵 = [−1, 1] is compact in R. Thus, since a finite Cartesian
product of compact sets is compact, we have

𝐴 × 𝐵 =
{
(𝑥, 𝑦) ∈ R2 : 1 ≤ 𝑥2 + 𝑦2 ≤ 2

}
× [−1, 1] = 𝑆

is compact in R3, as desired.
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2.7 Limits

All of our labour in the previous section will help generalize the most fundamental notion of
calculus: limits. The underlying formalities are very similar to single variable calculus, but there
are some new subtleties in higher dimensions.
In R𝑛 , we can only approach a real number from either the left or the right, and limits on the
endpoints of an interval are often separately defined a one-sided limits. However in R𝑛 , limits
need to be able to approach a point from any possible direction and in any weird way. It is therefore
not reasonable to use a separate definition for limits at boundary points. Hence, a good definition
for limit in R𝑛 should be indistinguishable between boundary points versus interior points of a set
𝐴.

2.7.1 Formal definitions

The formal definition of a limit in R can be generalized to R𝑛 by simply replacing the absolute
value with the corresponding norm.

Definition 2.7.1 Let 𝑓 : 𝐴 → R𝑚 be a function with 𝐴 ⊆ R𝑛 . Let 𝑎 ∈ R𝑛 be a limit
point of 𝐴 and let 𝑏 ∈ R𝑚 . Then 𝑏 is the limit of 𝑓 at 𝑎 if

∀𝜖 > 0,∃𝛿 > 0 𝑠.𝑡. ∀𝑥 ∈ 𝐴, 0 < | |𝑥 − 𝑎 | | < 𝛿 =⇒ || 𝑓 (𝑥) − 𝑏 | | < 𝜖.

If the above holds, we write lim𝑥→𝑎 𝑓 (𝑥) = 𝑏 or write 𝑓 (𝑥) → 𝑏 as 𝑥 → 𝑎. Otherwise,
the limit does not exist.

Example 2.7.2 Here is a proof that lim(𝑥,𝑦)→(2,3)(𝑥 + 𝑦) = 5 using the formal defini-
tion of a limit.

Proof. Fix 𝜖 > 0. Take 𝛿 = 𝜖/2. let (𝑥, 𝑦) ∈ R2. Assume 0 < | |(𝑥, 𝑦) − (2, 3)| | < 𝛿.
This implies that

|𝑥 − 2| ≤
√
(𝑥 − 2)2 + (𝑦 − 3)2 = | |(𝑥, 𝑦) − (2, 3)| | < 𝛿

and similarly |𝑦 − 3| < 𝛿. Then

| |(𝑥 + 𝑦) − 𝑡 | | = |𝑥 + 𝑦 − 5| = |(𝑥 − 2) + (𝑦 − 3)| ≤ |𝑥 − 2| + |𝑦 − 3| < 2𝛿 = 𝜖.

This completes the proof.

There are a few trick we can use to estimate the norms that arises in the proof. The first is to
estimate the distance between a fixed coordinate of two points by the distance between two points

which was used in the example above. The other is to use an intermediate approximation by
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"fixing one variable at a time", this occurs in the previous example with the triangle inequality.
The next example shows both ideas as well.

Example 2.7.3 Here is a proof that lim(𝑥,𝑦)→(2,3) 𝑥𝑦 = 6 using the formal definition
of a limit.

Proof. Fix 𝜀 > 0. Take 𝛿 = min{𝜀/6, 1}. Let (𝑥, 𝑦) ∈ R2. Assume 0 < ∥(𝑥, 𝑦) −
(2, 3)∥ < 𝛿. Note that

|𝑥 − 2| ≤ ∥(𝑥, 𝑦) − (2, 3)∥ < 𝛿 and |𝑦 − 3| ≤ ∥(𝑥, 𝑦) − (2, 3)∥ < 𝛿

Moreover, as 𝛿 ≤ 1, this implies that 2 < 𝑦 < 4. Then

∥𝑥𝑦 − 6∥ = |𝑥𝑦 − 6| = |𝑥𝑦 − 2𝑦 + 2𝑦 − 6|
≤ |𝑥𝑦 − 2𝑦 | + |2𝑦 − 6| by the triangle inequality
≤ |𝑥 − 2| · |𝑦 | + 2|𝑦 − 3|
≤ 4|𝑥 − 2| + 2|𝑦 − 3|
< 6𝛿 as |𝑥 − 2| < 𝛿 and |𝑦 − 3| < 𝛿

≤ 𝜀 as 𝛿 ≤ 𝜀/6.

This completes the proof.

Notice that we fixed one variable at a time by introducing a function 𝑓 (𝑥, 𝑦) = 𝑥𝑦, hence the first
bracket is 𝑓 (𝑥, 𝑦) − 𝑓 (2, 𝑦) where only 𝑥-coordinate is different, and 𝑓 (2, 𝑦) − 𝑓 (2, 3) has only the 𝑥

coordinate different. Another idea is to use the existence of single variable limits as an input.

Example 2.7.4 Here is a proof that lim(𝑥,𝑦)→(0,0) cos(𝑥 + 𝑦) = 1.

Proof. Fix 𝜀 > 0. As cos(𝑡) is continuous at 𝑡 = 0 and cos 0 = 1, there exists 𝛿1 > 0
such that

∀𝑡 ∈ R, |𝑡 | < 𝛿1 =⇒ | cos(𝑡) − 1| < 𝜀

Take 𝛿 = 𝛿1/2. Let (𝑥, 𝑦) ∈ R2. Assume 0 < ∥(𝑥, 𝑦)∥ < 𝛿 so this implies, by the
triangle inequality, that

|𝑥 + 𝑦 | ≤ |𝑥 | + |𝑦 | ≤ 2∥(𝑥, 𝑦)∥ < 2𝛿 = 𝛿1.

Hence, it follow from the first equation that | cos(𝑥 + 𝑦) − 1| < 𝜀 as required.

Now that we have some foundations for limits of maps R𝑛 → R𝑚 , naturally we will explore
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continuity in high dimensions next. The definitions and basic properties parallel each other in
almost every way, the key difference is that in high dimension we can approach a point in countless
many ways. This feature leads to many possible ways that a function can be discontinuous.
Looking back at our definition of limit, notice that a limit is only defined at limit points of the
domain. This means the limit at any interior point is well defined, but not necessarily at all
boundary points. In particular, a limit at an isolated point of a function’s domain is not defined.

Example 2.7.5 Let 𝐴 = [1, 3) ∪ {7} in R. Define the function 𝑓 : 𝐴→ R by

𝑓 (𝑥) =


𝑥 1 ≤ 𝑥 < 2,
100 2 ≤ 𝑥 < 3,
𝑒𝜋 𝑥 = 7.

The limit of 𝑓 at 𝑎 for any 𝑎 ∈ [1, 3) is defined even though it might not exist, but
the limit of 𝑓 at 7 is not defined.

Moreover, we only consider points belonging to the puncture ball and the function’s domain, as
we cannot evaluate the function at points outside its domain.

Example 2.7.6 Define 𝑓 (𝑥, 𝑦) = log(1− 𝑥62− 𝑦2). Although 𝑓 is only defined inside
the open ball 𝐵1(0, 0), the limit of 𝑓 as(𝑥, 𝑦) → (1, 0) is still defined according to our
definition, despite the fact that it doesn’t exist.

To prove that a limit does not exist using our current definition is possible but rather tedious,
as you can verify with the negation of this formal open ball definition. Instead, we can use an
equivalent sequential definition of the limit.

Lemma 2.7.7 Let 𝐴 ⊆ R𝑛 be a set and let 𝑓 : 𝐴 → R𝑚 be a function. Let 𝑎 ∈ R𝑛

be a limit point of 𝐴 and let 𝑏 ∈ R𝑚 . Then lim𝑥→𝑎 𝑓 (𝑥) = 𝑏 if and only if for
every sequence of points {𝑥(𝑘)}𝑘 in 𝐴\{𝑎} with 𝑥(𝑘) → 𝑎, the sequence of point
{ 𝑓 (𝑥(𝑘))}𝑘 in R𝑚 converges to 𝑏, that is, 𝑓 (𝑥(𝑘)) → 𝑏.

Proof. First suppose that 𝑎 is a limit point of 𝐴 and lim𝑥→𝑎 𝑓 (𝑥) = 𝑏,let {𝑥(𝑘)}𝑘 be a sequence in
𝐴\{𝑎} which converges → 𝑎. Now for this sequence, since it converges, there exist 𝐾 such that
for all 𝑘 ≥ 𝐾, | |𝑥(𝑘) − 𝑎 | | < 𝛿. Then by the definition of the limit, it follows that for all 𝑘 ≥ 𝐾,
| | 𝑓 (𝑥(𝑘)) − 𝑏 | | < 𝜖, which shows that this arbitrary sequence converges to 𝑏.
Conversely, suppose that every sequence in 𝐴\{𝑎} with 𝑥(𝑘) → 𝑎 satisfies 𝑓 (𝑥(𝑘)) → 𝑏. We prove
by contradiction and suppose that lim𝑥→𝑎 𝑓 (𝑥) ≠ 𝑏. Then by definition, there exist an 𝜖0 > 0 such
that for every 𝛿 > 0, there exists 𝑥 such that | |𝑥 − 𝑎 | | < 𝛿 but | | 𝑓 (𝑥) − 𝑏 | | ≥ 𝜖0. Consider a sequence
𝑥(𝑘) such that each term satisfies | |𝑥(𝑘) − 𝑎 | | < 𝛿 = 1

𝑘
, then 𝑥(𝑘) approaches 𝑎 as 𝑘 → ∞ and
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| | 𝑓 (𝑥(𝑘)) − 𝑏 | | ≥ 𝜖0. Clearly this is a contradiction as we constructed a sequence which tends to 𝑎
as 𝑘 → ∞, but also 𝑓 (𝑥(𝑘)) does not approach 𝑏 no matter the value of 𝑘. Completing the proof.

Example 2.7.8 Here is a proof that lim(𝑥,𝑦)→(0,0)
𝑥𝑦

𝑥2+𝑦2 does not exist.
Proof. Take the first sequence to be 𝑥(𝑘) = (0, 1/𝑘) for 𝑘 ∈ N+. By Lemma 2.3.14,
this converges to (0, 0). Notice that for 𝑘 ∈ N+,

𝑓 (𝑥(𝑘)) = 0
02 + 1/𝑘2 = 0

so lim𝑘→∞ 𝑓 (𝑥(𝑘)) = 0 by Lemma 2.3.14. Take the second sequence to be 𝑦(𝑘) =
(1/𝑘, 1/𝑘) for 𝑘 ∈ N+. By Lemma 2.3.14, this converges to (0, 0). Notice that for
𝑘 ∈ N+,

𝑓 (𝑦(𝑘)) = 1/𝑘2

1/𝑘2 + 1/𝑘2 =
1
2

so lim𝑘→∞ 𝑓 (𝑦(𝑘)) = 1/2 by Lemma 2.3.14. Since lim𝑘→∞ 𝑓 (𝑥(𝑘)) ≠ lim𝑘→∞ 𝑓 (𝑦(𝑘))
where {𝑥(𝑘)}𝑘 and {𝑦(𝑘)}𝑘 both converge to (0, 0), the desired limit does not exist
by Lemma 2.6.8.

Like single variable calculus, these definitions capture the essence of limits but are not efficient for
computation.

2.7.2 Basic properties

The most important and fundamental property allows you to reduce limits of vector valued
functions to limits of real valued functions.

Theorem 2.7.9 Let 𝑓 : 𝐴 → R𝑚 where 𝐴 ⊆ R𝑛 . Let 𝑎 be a limit point of 𝐴
and let 𝑏 = (𝑏1, . . . , 𝑏𝑚) ∈ R𝑚 . Let 𝑓1, . . . , 𝑓𝑚 be the coordinate functions of 𝑓 so
𝑓 = ( 𝑓1, . . . , 𝑓𝑚). Then

lim
𝑥→𝑎

𝑓 (𝑥) = 𝑏

if and only if for all 𝑖 ∈ {1, . . . ,𝑚}

lim
𝑥→𝑎

𝑓𝑖(𝑥) = 𝑏𝑖
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Proof. Proof. ( =⇒ ) Assume lim𝑥→𝑎 𝑓 (𝑥) = 𝑏. Fix 𝑖 ∈ {1, . . . ,𝑚}. Let 𝜀 > 0. By assumption, there
exists 𝛿 > 0 such that

∀𝑥 ∈ 𝐴, 0 < ∥𝑥 − 𝑎∥ < 𝛿 =⇒ ∥ 𝑓 (𝑥) − 𝑏∥ < 𝜀.

For any 𝑥 ∈ 𝐴, we have that | 𝑓𝑖(𝑥) − 𝑏𝑖 | ≤ ∥ 𝑓 (𝑥) − 𝑏∥ so the above implies with the same 𝛿 that

∀𝑥 ∈ 𝐴, 0 < ∥𝑥 − 𝑎∥ < 𝛿 =⇒ | 𝑓𝑖(𝑥) − 𝑏𝑖 | < 𝜀

Since 𝜀 > 0 was arbitrary, this shows that 𝑓𝑖(𝑥) → 𝑏𝑖 as 𝑥 → 𝑎.
(⇐=) Assume lim𝑥→𝑎 𝑓𝑖(𝑥) = 𝑏𝑖 for every 𝑖 ∈ {1, . . . ,𝑚}. Let 𝜀 > 0. By assumption, for each
𝑖 ∈ {1, . . . ,𝑚}, there exists 𝛿𝑖 > 0 such that

∀𝑥 ∈ 𝐴, 0 < ∥𝑥 − 𝑎∥ < 𝛿𝑖 =⇒ | 𝑓𝑖(𝑥) − 𝑏𝑖 | <
𝜀√
𝑚

Set 𝛿 = min {𝛿1, . . . , 𝛿𝑚}. Let 𝑥 ∈ 𝐴. Assume 0 < ∥𝑥 − 𝑎∥ < 𝛿. For each 𝑖 ∈ {1, . . . ,𝑚}, we have
𝛿 ≤ 𝛿𝑖 so (2.6.3) implies that | 𝑓𝑖(𝑥) − 𝑏𝑖 | < 𝜀/

√
𝑚. It follows that

∥ 𝑓 (𝑥) − 𝑏∥ =
√
| 𝑓1(𝑥) − 𝑏1 |2 + · · · + | 𝑓𝑚(𝑥) − 𝑏𝑚 |2 ≤

√
𝑚 max

1≤𝑖≤𝑚
| 𝑓𝑖(𝑥) − 𝑏𝑖 |2

<

√
𝑚 · 𝜀

2

𝑚

= 𝜀.

Since 𝜀 > 0 was arbitrary, this shows that 𝑓 (𝑥) → 𝑏 as 𝑥 → 𝑎.

As you can see, this makes finding limits much easier!

Example 2.7.10 Define 𝑓 (𝑥, 𝑦) = (𝑥 + 𝑦, 𝑥𝑦) so 𝑓 = ( 𝑓1, 𝑓2) can be written using
its coordinate functions 𝑓1(𝑥, 𝑦) = 𝑥 + 𝑦 and 𝑓2(𝑥, 𝑦) = 𝑥𝑦. By Examples 2.6.3 and
2.6.4, it follows that

lim
(𝑥,𝑦)→(2,3)

𝑓1(𝑥, 𝑦) = 5 and lim
(𝑥,𝑦)→(2,3)

𝑓2(𝑥, 𝑦) = 6

Therefore, by Theorem 2.6.10,

lim
(𝑥,𝑦)→(2,3)

𝑓 (𝑥, 𝑦) =
(

lim
(𝑥,𝑦)→(2,3)

𝑓1(𝑥, 𝑦), lim
(𝑥,𝑦)→(2,3)

𝑓2(𝑥, 𝑦)
)
= (5, 6).

Theorem 2.7.11 Let 𝐴 ⊆ R𝑛 be a set and let 𝑎 be a limit point of 𝐴. Let 𝑓 and 𝑔 be
R𝑚-valued functions defined on 𝐴. Let 𝜙 be a real-valued function defined on 𝐴.
Let 𝜆 ∈ R and 𝑏 ∈ R𝑚 be constants. All of the following hold:
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(a) (Constants) lim𝑥→𝑎 𝑏 = 𝑏 and lim𝑥→𝑎 𝑥 = 𝑎.
(b) (Linearity) If lim𝑥→𝑎 𝑓 (𝑥) and lim𝑥→𝑎 𝑔(𝑥) exist then lim𝑥→𝑎( 𝑓 (𝑥) +𝜆𝑔(𝑥)) exists
and

lim
𝑥→𝑎

( 𝑓 (𝑥) +𝜆𝑔(𝑥)) = lim
𝑥→𝑎

𝑓 (𝑥) +𝜆 lim
𝑥→𝑎

𝑔(𝑥)

(c) (Scalar product) If lim𝑥→𝑎 𝑓 (𝑥) and lim𝑥→𝑎 𝜙(𝑥) exist then lim𝑥→𝑎(𝜙(𝑥) 𝑓 (𝑥))
exists and

lim
𝑥→𝑎

(𝜙(𝑥) 𝑓 (𝑥)) =
(
lim
𝑥→𝑎

𝜙(𝑥)
) (

lim
𝑥→𝑎

𝑓 (𝑥)
)

(d) (Dot product) If lim𝑥→𝑎 𝑓 (𝑥) and lim𝑥→𝑎 𝑔(𝑥) exist then lim𝑥→𝑎( 𝑓 (𝑥) · 𝑔(𝑥)) exists
and

lim
𝑥→𝑎

( 𝑓 (𝑥) · 𝑔(𝑥)) =
(
lim
𝑥→𝑎

𝑓 (𝑥)
)
·
(
lim
𝑥→𝑎

𝑔(𝑥)
)

Proof. These are all left as exercises, for a) and b), use the formal definition, for c), use the theorem
above to reduce to the case 𝑚 = 1 and prove using the formal definition. For d), use b) and c).

Finally, the squeeze theorem also exists for real-valued functions.

Theorem 2.7.12 (Squeeze theorem)
Let 𝐴 ⊆ R𝑛 be a set and let 𝑎 be a limit point of 𝐴. Let 𝑓 , 𝑔, ℎ be real-valued
functions with domain 𝐴. Assume there exists 𝛿 > 0 such that

∀𝑥 ∈ 𝐴, 0 < ∥𝑥 − 𝑎∥ < 𝛿 =⇒ 𝑓 (𝑥) ≤ 𝑔(𝑥) ≤ ℎ(𝑥)

If lim𝑥→𝑎 𝑓 (𝑥) = lim𝑥→𝑎 ℎ(𝑥) = 𝑏 for some 𝑏 ∈ R then lim𝑥→𝑎 𝑔(𝑥) = 𝑏

Proof. Exercise.
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2.7.3 Limits with infinity

In high dimensions, limits with infinity are still defined using a limit, but since there are
countlessly many ways to diver outward in R𝑛 for 𝑛 ≥ 2, the notion of ±∞ no longer makes any

sense. Instead, we only consider whether the norm of a sequence grows arbitrarily large.

Definition 2.7.13 Let 𝐴 ⊆ R𝑛 be unbounded. Let 𝑓 : 𝐴 → R𝑚 and let 𝑏 ∈ R𝑚 .
Define 𝑏 to be the limit of 𝑓 (𝑥) as ∥𝑥∥ → ∞ provided

∀𝜀 > 0,∃𝑀 > 0 s.t. ∀𝑥 ∈ 𝐴, ∥𝑥∥ > 𝑀 =⇒ ∥ 𝑓 (𝑥) − 𝑏∥ < 𝜀.

If the above holds, then write lim∥𝑥∥→∞ 𝑓 (𝑥) = 𝑏 or write 𝑓 (𝑥) → 𝑏 as ∥𝑥∥ → ∞.
Otherwise, the limit lim∥𝑥∥→∞ 𝑓 (𝑥) does not exist.

As we will discover, limits involving infinity are often pretty tricky to deal with.

Example 2.7.14 In the two-dimensional plane, you can check that

lim
∥(𝑥,𝑦)∥→∞

1
𝑥2 + 𝑦2 = 0 yet lim

∥(𝑥,𝑦)∥→∞

1
𝑥2 does not exist.

This may seem strange at first but notice that the latter function 1
𝑥2 does not tend to

zero along all possible sequences {(𝑥(𝑘), 𝑦(𝑘))}𝑘 with ∥(𝑥(𝑘), 𝑦(𝑘))∥ → ∞.

We can similarly define limits of real-valued functions diverging to infinity.

Definition 2.7.15 Definition 2.6.16 Let 𝐴 ⊆ R𝑛 be a set. Let 𝑎 be a limit point of
𝐴. Let 𝑓 : 𝐴 → R be a real-valued function. The limit of 𝑓 at 𝑎 diverges to +∞
provided

∀𝑀 > 0,∃𝛿 > 0 s.t. ∀𝑥 ∈ 𝐴, 0 < ∥𝑥 − 𝑎∥ < 𝛿 =⇒ 𝑓 (𝑥) > 𝑀

If the above holds, then write lim𝑥→𝑎 𝑓 (𝑥) = +∞ or write 𝑓 (𝑥) → +∞ as 𝑥 → 𝑎.
The definition for 𝑓 (𝑥) → −∞ as 𝑥 → 𝑎 is similar.

Example 2.7.16 Example 2.6.17 In the two-dimensional plane, you can check that

lim
(𝑥,𝑦)→(0,0)

1
𝑥2 + 𝑦2 = +∞ yet lim

(𝑥,𝑦)→(0,0)

𝑥

𝑥2 + 𝑦2 does not exist and is not ±∞.

Again, you can check the latter limit by using the sequential definition of the limit.
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2.8 Continuity

2.8.1 Formal definitions

Coming from single variable calculus, we might think that a function 𝑓 : 𝐴 → R𝑚 is continuous
at a point 𝑎 ∈ 𝐴 whenever

lim
𝑥→𝑎

𝑓 (𝑥) = 𝑓 (𝑎).

This is mostly correct except that the limit is only if 𝑎 is a limit point of 𝐴, but not if 𝑎 is an
isolated point. Hence this motivates us to come up with a better definition:

Definition 2.8.1 Let 𝑓 : 𝐴 → R𝑚 be a function with domain 𝐴 ⊆ 𝑅𝑛 . Let 𝑎 ∈ 𝐴 be
a point. The function 𝑓 is continuous at a provided

∀𝜖 > 0,∃𝛿 > 0, 𝑠.𝑡. ∀𝑥 ∈ 𝐴, | |𝑥 − 𝑎 | | < 𝛿 =⇒ || 𝑓 (𝑥) − 𝑓 (𝑎)| | < 𝜖.

With this, notice that all isolated points are continuous since there exist a small enough 𝛿 such that
𝐴 ∩ 𝐵𝛿(𝑎) = {𝑎}, so it is vacuously continuous. And for all non-isolated point, we regain our old
definition that 𝑓 is continuous at 𝑎 if and only if lim𝑥→𝑎 𝑓 (𝑥) = 𝑓 (𝑎).

Example 2.8.2 Set 𝑓 (𝑥, 𝑦) = 𝑥 + 𝑦 and 𝑔(𝑥, 𝑦) = 𝑥𝑦. From Examples 2.6.3 and 2.6.4,
it follows that

lim
(𝑥,𝑦)→(2,3)

𝑓 (𝑥, 𝑦) = 5 = 𝑓 (2, 3), and lim
(𝑥,𝑦)→(2,3)

𝑔(𝑥, 𝑦) = 6 = 𝑔(2, 3).

Thus, both 𝑓 and 𝑔 are continuous at (2, 3).

Geometrically, we can using subsets and open balls to create a more intuitive definition. Notice 𝑓
is continuous at 𝑎 is equivalent to

∀𝜀 > 0,∃𝛿 > 0 s.t. ∀𝑥 ∈ 𝐴, 𝑥 ∈ 𝐵𝛿(𝑎) =⇒ 𝑓 (𝑥) ∈ 𝐵𝜀( 𝑓 (𝑎))
⇐⇒∀𝜀 > 0,∃𝛿 > 0 s.t. ∀𝑥 ∈ 𝐴∩ 𝐵𝛿(𝑎), 𝑓 (𝑥) ∈ 𝐵𝜀( 𝑓 (𝑎))
⇐⇒∀𝜀 > 0,∃𝛿 > 0 s.t. 𝑓 (𝐴∩ 𝐵𝛿(𝑎)) ⊆ 𝐵𝜀( 𝑓 (𝑎)).

It can be illustrated with the following diagram.

67



Chapter 2. Topology

as with limits, there is also a sequential definition of continuity.

Lemma 2.8.3 Let 𝑓 : 𝐴 → R𝑚 be a function with domain 𝐴 ⊆ R𝑛 . Let 𝑎 ∈ 𝐴 be
a point. Then 𝑓 is continuous at 𝑎 if and only if for every sequence {𝑥(𝑘)}𝑘 in 𝐴

converging to 𝑎, the sequence { 𝑓 (𝑥(𝑘))}𝑘 in R𝑚 converges to 𝑓 (𝑎).

This lemma is very useful in verifying a discontinuity, and is left as an exercise, note that isolated
points must be considered separately.

Definition 2.8.4 Let 𝑓 : 𝐴 → R𝑚 be a function with domain 𝐴 ⊆ R𝑛 . For a subset
𝑆 ⊆ 𝐴, the function 𝑓 is continuous on 𝑆 if 𝑓 is continuous at 𝑎 for every 𝑎 ∈ 𝑆. The
function 𝑓 is continuous if 𝑓 is continuous on its domain 𝐴.

Example 2.8.5 The function 𝑓 (𝑥, 𝑦) = 𝑥 + 𝑦 is continuous on its domain R2.

Proof. Fix (𝑎, 𝑏) ∈ R2. Let 𝜀 > 0. Take 𝛿 = 𝜀
2 . Let (𝑥, 𝑦) ∈ R2. Assume

∥(𝑥, 𝑦) − (𝑎, 𝑏)∥ < 𝛿

so, as usual, |𝑥 − 𝑎 | < 𝛿 and |𝑦 − 𝑏 | < 𝛿. Then

∥ 𝑓 (𝑥, 𝑦) − 𝑓 (𝑎, 𝑏)∥ = |(𝑥 + 𝑦) − (𝑎 + 𝑏)| = |𝑥 − 𝑎 + 𝑦 − 𝑏 |
≤ |𝑥 − 𝑎 | + |𝑦 − 𝑏 | by triangle inequality
< 𝛿 + 𝛿 as |𝑥 − 𝑎 | < 𝛿 and |𝑦 − 𝑏 | < 𝛿

= 2𝛿 = 𝜀,

since 𝛿 = 𝜀/2. This completes the proof.

Recall in single variable calculus, there were 3 common types of discontinuities: removable,
jump, or infinite. Discontinuities in higher dimensions are much more diverse. However

removable discontinuity still remains and is straightforward to describe.

Example 2.8.6 Define

𝐹(𝑥, 𝑦) =
{
𝑥 + 𝑦 if (𝑥, 𝑦) ≠ (2, 3)
237 otherwise.

By Example above, 𝐹 is continuous on R2\{(2, 3)}, but 𝐹 is not continuous at (2, 3)
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since

lim
(𝑥,𝑦)→(2,3)

𝐹(𝑥, 𝑦) = 5 ≠ 237 = 𝐹(2, 3)

It becomes much more complicated for every other cases, as there are infinitely many ways for a
function’s limit to not exist. Notice that these example below are only about maps R2 → R yet
they are already so unpredictable.

Example 2.8.7 For (𝑥, 𝑦) ≠ (0, 0), define

𝑓 (𝑥, 𝑦) = 1
𝑥2 + 𝑦2 , 𝑔(𝑥, 𝑦) = 𝑥

𝑥2 + 𝑦2 , ℎ(𝑥, 𝑦) = 𝑥

𝑥 + 𝑦
and set 𝑓 (0, 0) = 𝑔(0, 0) = ℎ(0, 0) = 0. The functions 𝑓 , 𝑔, and ℎ are all discontinuous
for the same reason as the function𝐻 in Example 2.7.10, namely, their limits at (0, 0)
do not exist. However, the discontinuities all look completely different! View the
graphs of 𝑓 , 𝑔, ℎ in this Math3D demo by toggling each surface one at a time. Notice
𝑓 (𝑥, 𝑦) → +∞ as (𝑥, 𝑦) → (0, 0) but the same is not at all true for 𝑔 or ℎ.

As we see, even just trying to identify whether or not a function is continuous at a point is not so
easy.

2.8.2 Basic properties

Like limits, the most fundamental property allows us to reduce checking continuity of
vector-valued functions to continuity of real-valued functions.

Theorem 2.8.8 The map 𝑓 = ( 𝑓1, ..., 𝑓𝑚) : 𝐴 → R𝑚 is continuous at 𝑎 ∈ 𝐴 if and
only if for each 𝑖 ∈ {1, ...,𝑚}, the component function 𝑓𝑖 is continuous at 𝑎.

Proof. This follows almost immediately from 2.7.9.

This naturally leads to the following lemma:

Lemma 2.8.9 Every linear transformation R𝑛 → R𝑚 is continuous.

Proof. By theorem above, it suffices to check linear maps of the form R𝑛 → R. That is, for
fixed 𝑐1, ..., 𝑐𝑛 ∈ R, we must show 𝑓 (𝑥1, ..., 𝑥𝑛) = 𝑐1𝑥1 + · · · + 𝑐𝑛𝑥𝑛 is continuous on R𝑛 . Fix
(𝑎1, ..., 𝑎𝑛) in R𝑛 and 𝜖 > 0, let 𝑐′ = 𝑚𝑎𝑥(𝑐1, ..., 𝑐𝑛) and take 𝛿 = 𝜖

|𝑐′ |𝑛 . Let (𝑥1, ..., 𝑥𝑛) ∈ R𝑛 such that
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| |(𝑥1, ..., 𝑥𝑛) − (𝑎1, ..., 𝑎𝑛)| | < 𝛿, then each |𝑥𝑖 − 𝑎𝑖 | < | |(𝑥1, ..., 𝑥𝑛) − (𝑎1, ..., 𝑎𝑛)| | < 𝛿 as usual. Then

| | 𝑓 (𝑥1, ..., 𝑥𝑛) − 𝑓 (𝑎1, ..., 𝑛)| | = |𝑐1𝑥1 + · · · + 𝑐𝑛𝑥𝑛 − (𝑐1𝑎1 + · · · + 𝑐𝑛𝑎𝑛)|
≤ |𝑐1 | |𝑥1 − 𝑎1 | + · · · + |𝑐𝑛 | |𝑥𝑛 − 𝑎𝑛 |
≤ |𝑐′ |(𝑛𝛿)
= 𝜖

Hence every linear transformation R𝑛𝑡𝑜R is continuous, this completes the proof.

Example 2.8.10 The lemma above shows all of the following maps are continuous.

• The identity map id : R𝑛 → R𝑛 defined by id(𝑥) = 𝑥 is linear and hence
continuous.

• Fix 𝑖 ∈ {1, 2, . . . , 𝑛}. The 𝑖 th coordinate projection map 𝜋𝑖 : R𝑛 → R defined
by 𝜋𝑖(𝑥) = 𝑥𝑖 is linear and hence continuous.

• For any 𝑚 × 𝑛 matrix 𝐴, the linear map 𝑓 : R𝑛 → R𝑚 defined by 𝑓 (𝑥) = 𝐴𝑥 is
continuous. By a theorem in linear algebra, this actually describes all possible
linear maps.

There is also the standard list of properties that follows from limits.

Theorem 2.8.11 Theorem 2.7.16 Let 𝐴 ⊆ R𝑛 and let 𝑎 ∈ 𝐴. Let 𝑓 and 𝑔 be R𝑚-
valued functions defined on 𝐴. Let 𝜙 be a real-valued function defined on 𝐴. Let
𝜆 ∈ R. All of the following hold:
(a) If 𝑓 and 𝑔 are continuous at 𝑎 then the function 𝑓 +𝜆𝑔 is continuous at 𝑎.
(b) If 𝑓 and 𝑔 are continuous at 𝑎 then their dot product 𝑓 · 𝑔 is continuous at 𝑎.
(c) If 𝑓 and 𝜙 are continuous at 𝑎 then their scalar product 𝜙 𝑓 is continuous at 𝑎.

Proof. Again by theorem 2.8.8, it suffices to check all of these properties for real-valued functions.
Notice b) and c) are the same in this case. Each statement can then be shown directly by the
definition of continuity.

This allows us to create more continuous functions.

Example 2.8.12 Define the map 𝑓 : R𝑛 → R by 𝑁(𝑥) = ∥𝑥∥2 = 𝑥2
1 + · · · + 𝑥2

𝑛 . Notice
𝑓 is the dot product of the identity map id : R𝑛 → R𝑛 with itself. That is, for
𝑥 ∈ R𝑛 ,
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id(𝑥) · id(𝑥) = 𝑥 · 𝑥 = ∥𝑥∥2 = 𝑓 (𝑥)

Since id is a linear map and hence continuous, the map 𝑓 is continuous by Theorem
2.7.16(b).

Another fundamental property of continuity relates to composition of functions.

Corollary 2.8.13 Let 𝑓 : 𝐴 → 𝐵 where 𝐴 ⊆ R𝑛 and 𝐵 ⊆ R𝑚 . Let 𝑔 : 𝐵 → R𝑘 . Let
𝑎 ∈ 𝐴. If 𝑓 is continuous at 𝑎 and 𝑔 is continuous at 𝑓 (𝑎) then 𝑔 ◦ 𝑓 is continuous
at 𝑎.

This corollary follows immediately from the following more general theorem.

Theorem 2.8.14 Let 𝑓 : 𝐴 → 𝐵 where 𝐴 ⊆ R𝑛 and 𝐵 ⊆ R𝑚 . Let 𝑔 : 𝐵 → R𝑘 . Let 𝑎
be a limit point of 𝐴 and let 𝑏 ∈ 𝐵. If lim𝑥→𝑎 𝑓 (𝑥) = 𝑏 and 𝑔 is continuous at 𝑏 then
lim𝑥→𝑎 𝑔 ◦ 𝑓 (𝑥) = 𝑔(𝑏).

Proof. Fix 𝜖 > 0. Since 𝑔 is continuous at 𝑏, there exists 𝛿′ > 0 such that

∀𝑦 ∈ 𝐵, | |𝑦 − 𝑏 | | < 𝛿′ =⇒ ||𝑔(𝑦) − 𝑔(𝑏)| | < 𝜖.

Since 𝑓 (𝑥) → 𝑏 as 𝑥 → 𝑎, there exists 𝛿 > 0 such that

∀𝑥 ∈ 𝐴, 0 < | |𝑥 − 𝑎 | | < 𝛿 =⇒ || 𝑓 (𝑥) − 𝑏 | | < 𝛿′.

Fix 𝑥 ∈ 𝐴. Assume 0 < | |𝑥 − 𝑎 | | < 𝛿. By above, | | 𝑓 (𝑥) − 𝑏 | | < 𝛿′, which implies 𝑔( 𝑓 (𝑥)) − 𝑔(𝑏)| | < 𝜖,
as required.

Equipped with the theorem and corollary above, we can construct even more continuous
functions.
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Example 2.8.15 We know 𝑔(𝑡) = cos(𝑡) is continuous on R and 𝑓 (𝑥, 𝑦) = (𝑥 + 𝑦) is
continuous on R2. Therefore, 𝑔 ◦ 𝑓 (𝑥, 𝑦) = 𝑔(𝑥 + 𝑦) = cos(𝑥 + 𝑦) is continuous on
R2.

Another class of continuous functions are multivariable polynomials.

Definition 2.8.16 Definition 2.7.22 A monomial in the 𝑛 variables 𝑥1, . . . , 𝑥𝑛 is a
function of the form 𝑥

𝛼1
1 · · · 𝑥𝛼𝑛𝑛 for some 𝛼1, . . . , 𝛼𝑛 ∈ N. A polynomial in the 𝑛

variables 𝑥1, . . . , 𝑥𝑛 is a linear combination of monomials in 𝑛 variables with real
coefficients.

Example 2.8.17 The function 𝑝(𝑥, 𝑦, 𝑧) = 𝑥𝑦 + 3𝑧4 is a polynomial in the 3 variables
𝑥, 𝑦, 𝑧. It is a linear combination of the monomials 𝑥𝑦 and 𝑧4 which respectively
correspond to (𝛼1, 𝛼2, 𝛼3) = (1, 1, 0) and (0, 0, 4).To show 𝑝 is continuous, we write
it as a composition of functions. Namely, define

• 𝑓 : R2 → R by 𝑓 (𝑥, 𝑦) = 𝑥𝑦, and 𝑔 : R → R by 𝑔(𝑥) = 𝑥4.
• 𝜋3 : R3 → R by 𝜋3(𝑥, 𝑦, 𝑧) = 𝑧, and 𝜋1,2 : R3 → R2 by 𝜋1,2(𝑥, 𝑦, 𝑧) = (𝑥, 𝑦)

We can check 𝑓 is continuous by definition. From single-variable calculus, the
function 𝑔 is continuous.Since the projections𝜋3 and𝜋1,2 are linear transformations,
they are also continuous. Notice that

∀(𝑥, 𝑦, 𝑧) ∈ R3, 𝑝(𝑥, 𝑦, 𝑧) = 𝑥𝑦 + 3𝑧4 = ( 𝑓 ◦𝜋1,2) (𝑥, 𝑦, 𝑧) + 3 (𝑔 ◦𝜋3) (𝑥, 𝑦, 𝑧).

From 2.8.14 and our previous observations, 𝑓 ◦𝜋1,2 and 𝑔 ◦𝜋3 are continuous. Thus,
the polynomial 𝑝 is continuous as a linear combination of continuous functions are
continuous.

Lemma 2.8.18 All polynomials in 𝑛 variables are continuous on R𝑛 .

Proof. It suffices to show all monomials in 𝑛 variables are continuous. This is left as an exercise, you
only need to know the fact that all linear transformations are continuous, continuity of 𝑓 (𝑥, 𝑦) = 𝑥𝑦,
and continuity of single-variable powers 𝑥𝑛 . Use induction on the degree of th monomial.

2.8.3 Topological properties

Topological properties of sets like open, closed, compact, etc. help characterize the behaviour of
functions on sets. But there is a dual perspective: how do functions affect the properties of these
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sets? Without any restriction, anything can happen. But if we only look at continuous function,
we get many useful properties.

Continuous functions preserve topological properties of set (under image or preimage).

This can be translated into the following.

Theorem 2.8.19 Theorem 2.7.25 Let 𝑓 : R𝑛 → R𝑚 be a function. The following are
equivalent:
(a) 𝑓 is continuous on R𝑛

(b) The preimage 𝑓 −1(𝑈) is open for every open set𝑈 ⊆ R𝑚

(c) The preimage 𝑓 −1(𝑉) is closed for every closed set 𝑉 ⊆ R𝑚 .

Proof. The proofs that (a) implies (b) and (a) implies (c) are below. The converse statements are left
as exercises. Assume 𝑓 is continuous on R𝑛 . By definition,

∀𝑎 ∈ R𝑛 ,∀𝜀 > 0,∃𝛿 > 0 s.t. 𝑓 (𝐵𝛿(𝑎)) ⊆ 𝐵𝜀( 𝑓 (𝑎))
⇐⇒∀𝑎 ∈ R𝑛 ,∀𝜀 > 0,∃𝛿 > 0 s.t. 𝐵𝛿(𝑎) ⊆ 𝑓 −1 (𝐵𝜀( 𝑓 (𝑎))) .

To prove (b), fix an open set 𝑈 ⊆ R𝑚 . Let 𝑎 ∈ 𝑓 −1(𝑈) so 𝑓 (𝑎) ∈ 𝑈 . Since 𝑈 is open, there exists
𝜀 > 0 such that 𝐵𝜀( 𝑓 (𝑎)) ⊆ 𝑈 . By (2.7.2), there exists 𝛿 > 0 such that

𝐵𝛿(𝑎) ⊆ 𝑓 −1 (𝐵𝜀( 𝑓 (𝑎))) ⊆ 𝑓 −1(𝑈)

as required. This establishes that 𝑓 −1(𝑈) is open and hence (b) holds. To prove (c), fix a closed set
𝑉 ⊆ R𝑚 so 𝑉 𝑐 is open. Note 𝑓 −1 (𝑉 𝑐) =

(
𝑓 −1(𝑉)

) 𝑐 is open since (b) already follows from (a). You
can therefore conclude that 𝑓 −1(𝑉) is closed, so (c) also holds.

This solves many problems involving whether a set is open or closed, as well as the continuity of
a function as shown below.

Example 2.8.20 Example 2.7.27 Let 𝐴 =
{
(𝑥, 𝑦, 𝑧) ∈ R3 : 𝑥𝑦 + 3𝑧4 ≤ 8

}
. The poly-

nomial 𝑓 : R3 → R given by 𝑓 (𝑥, 𝑦, 𝑧) = 𝑥𝑦 + 3𝑧4 is continuous by Lemma 2.7.24.
Notice that

𝑓 −1((−∞, 8]) =
{
(𝑥, 𝑦, 𝑧) ∈ R3 : 𝑓 (𝑥, 𝑦, 𝑧) ≤ 8

}
= 𝐴

Since the interval (−∞, 8] is closed, it follows that the set 𝐴 is closed.

Example 2.8.21 Let 𝑓 : R2 → R be the function defined by 𝑓 (𝑥, 𝑦) = 237 for
𝑥2 + 𝑦2 < 1 and 𝑓 (𝑥, 𝑦) = 0 otherwise. By definition, you have that

73



Chapter 2. Topology

𝑓 −1({237}) =
{
(𝑥, 𝑦) ∈ R2 : 𝑥2 + 𝑦2 < 1

}
= 𝐵1((0, 0))

which is an open ball. Thus, 𝑓 −1({237}) is open, yet the set {237} is closed. hence,
𝑓 cannot be continuous on R𝑛 .

Furthermore, continuity also preserves compactness under image.

Theorem 2.8.22 If 𝐴 is a compact subset of R𝑛 , and 𝑓 is an R𝑚-valued function
that is continuous on 𝐴, then 𝑓 (𝐴) is a compact subset of R𝑚 .

Proof. If 𝐴 is empty, then 𝑓 (𝐴) is empty and hence compact. Assume 𝐴 is not empty. Let {𝑦(𝑘)}𝑘 be
a sequence in 𝑓 (𝐴), we want to show there exist a subsequence which converges to a point inside
𝑓 (𝐴). For each 𝑘 ∈ N+, the set 𝑓 −1(𝑦(𝑘)) is non-empty since 𝑦(𝑘) ∈ 𝑓 (𝐴) and 𝐴 is non-empty. Thus,
we can choose some 𝑥(𝑘) ∈ 𝑓 −1(𝑦(𝑘)) for each 𝑘 ∈ N+. The sequence {𝑥(𝑘)}𝑘 lies in 𝐴, so since 𝐴
is compact, it follows by definition that there exists some strictly increasing 𝑚 : N+ → N+, such
that the subsequence {𝑥(𝑚(𝑘))}𝑘 converges to some 𝑎 ∈ 𝐴. By continuity of 𝑓

lim
𝑘→∞

𝑓 (𝑥(𝑚(𝑘))) = 𝑓 ( lim
𝑘→∞

𝑥(𝑚(𝑘))) = 𝑓 (𝑎).

Thus, the subsequence {𝑦(𝑚(𝑘))}𝑘 converges to 𝑓 (𝑎) ∈ 𝑓 (𝐴). hence 𝑓 (𝐴) is compact.

This theorem will be decisive in the proof of the extreme value theorem. For now, we can use it to
show seemingly complicated sets are compact or that a function is not continuous.

Example 2.8.23 Consider the set 𝐵 = {(𝑥𝑦, 𝑦𝑧, 𝑥𝑧) : 0 ≤ 𝑥, 𝑦, 𝑧 ≤ 1}. The function
𝑓 : R3 → R3 given by 𝑓 (𝑥, 𝑦, 𝑧) = (𝑥𝑦, 𝑦𝑧, 𝑥𝑧) satisfies

𝑓
(
[0, 1]3

)
= { 𝑓 (𝑥, 𝑦, 𝑧) : 0 ≤ 𝑥, 𝑦, 𝑧 ≤ 1} = 𝐵

Moreover, 𝑓 is a polynomial in each component, so 𝑓 is continuous as each com-
ponent is continuous. Since the cube [0, 1]3 is compact, the set 𝐵 = 𝑓

(
[0, 1]3

)
is

therefore compact.

Example 2.8.24 Define the function 𝑓 : R2 → R by 𝑓 (𝑥) = 1/𝑥 if 𝑥 ≠ 0 and 𝑓 (0) = 0.
For any 0 < 𝜀 < 1, the image of the set 𝐴 = [𝜀, 1] is the set 𝑓 (𝐴) = [1, 1/𝜀], which is
compact. On the other hand, the image of the set 𝐵 = [0, 1] is the set {0} ∪ [1,∞),
which is not compact. Hence, 𝑓 is not continuous.
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2.9 Path-connected sets

We have investigated some key topological properties of set. They each have their own intuitive
concept, but none of them ensure that a set is "connected" in a natural sense. There are examples

of open, closed, and compact sets which are disjoint union of sets. So how can we capture the
concept of "connected" for a set 𝑆 ⊆ R𝑛 . Informally, this is the same as being able to walk from

one point of 𝑆 to any other point in 𝑆 without leaving 𝑆.

Definition 2.9.1 A set 𝑆 ⊆ R𝑛 is path-connected if for every pair of points 𝑝, 𝑞 ∈ 𝑆
three exists a continuous function 𝛾 : [𝑎, 𝑏] ∈ R𝑛 such that 𝛾(𝑎) = 𝑝 and 𝛾(𝑏) = 𝑞

and img(𝛾) ⊆ 𝑆.

A few simple examples can demonstrate that this definition is sensible.

Example 2.9.2 Fix 𝑎 ∈ R𝑛 and 𝑟 > 0. The open ball 𝐵𝑟(𝑎) is path-connected.

The "picture proof" is illustrated above and the formal proof is below.
Proof. Fix 𝑝, 𝑞 ∈ 𝐵𝑟(𝑎). Define 𝛾 : [0, 1] → R𝑛 by

𝛾(𝑡) = (1− 𝑡)𝑝 + 𝑡𝑞

so 𝛾(0) = 𝑝 and 𝛾(1) = 𝑞. Note 𝛾 is the straight line segment from 𝑝 to 𝑞. Each
component of 𝛾 is a linear single-variable polynomial 𝑡, so it is continuous. It
remains to check img(𝛾) is contained in the open ball. Fix 𝑡 ∈ [0, 1]. Observe that

∥𝛾(𝑡) − 𝑎∥ = ∥(1− 𝑡)𝑝 + 𝑡𝑞 − 𝑎∥
= ∥(1− 𝑡)(𝑝 − 𝑎) + 𝑡(𝑞 − 𝑎)∥
≤ ∥(1− 𝑡)(𝑝 − 𝑎)∥ + ∥𝑡(𝑞 − 𝑎)∥ by the triangle inequality
= |1− 𝑡 |∥𝑝 − 𝑎∥ + |𝑡 |∥𝑞 − 𝑎∥ as 𝑡 ∈ R

< |1− 𝑡 |𝑟 + |𝑡 |𝑟 = 𝑟 as 𝑝, 𝑞 ∈ 𝐵𝑟(𝑎).

This implies that 𝛾(𝑡) ∈ 𝐵𝑟(𝑎) so img(𝛾) is in the open ball.
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The open ball is a special example of a path-connected set since we can connect any two points by
a line segment. This common property warrants its own terminology.

Definition 2.9.3 A set 𝑆 ⊆ R𝑛 is convex if the line segment between any two points
𝑝, 𝑞 ∈ 𝑆 lies inside 𝑆.

Convex sets are an especially nice case of path-connected sets, but we will not delve into them too
deeply in this course. Balls, cubes, planes, and regular polygons are all convex, however anything

that has an indent or a part jutting out is not convex. It is obvious that all convex sets are
path-connected but not vice versa. To prove a set is not path-connected requires the use of the

intermediate value theorem.

Example 2.9.4 The set 𝑆 =
{
(𝑥, 𝑦) ∈ R2 : 𝑥 ≠ 0

}
is the 2-dimensional plane minus

the vertical axis. It is not path-connected. You can illustrate the proof with a
picture.

Proof. Take 𝑝 = (−1, 0) and 𝑞 = (1, 0). Let 𝛾 : [𝑎, 𝑏] → R2 be any continuous
function such that 𝛾(𝑎) = 𝑝 = (−1, 0) and 𝛾(𝑏) = 𝑞 = (1, 0). Write 𝛾 = (𝛾1, 𝛾2)
in terms of its component functions, each of which are continuous by Theorem
2.7.12. Note 𝛾1(𝑎) = −1 and 𝛾1(𝑏) = 1 and 𝛾1 : [𝑎, 𝑏] → R is continuous. By the
intermediate value theorem, there exists 𝑐 ∈ (𝑎, 𝑏) such that 𝛾1(𝑐) = 0. This implies
that 𝛾(𝑐) lies on the vertical axis, so 𝛾(𝑐) ∉ 𝑆. This proves img(𝛾) ⊈ 𝑆 and hence 𝑆
is not path-connected.

Now that we’ve understood path-connectedness, we can add yet another topological property of
continuous functions, namely, they preserve path-connectedness sets under image.

Theorem 2.9.5 Let 𝑆 ⊆ R𝑛 be a path-connected set. Let 𝑓 be a R𝑚-valued function
defined on 𝑆, if 𝑓 is continuous on 𝑆 then 𝑓 (𝑆) is path-connected.

Proof. Let 𝑝, 𝑞 ∈ 𝑓 (𝑆) be arbitrary. By definition, there exists 𝑎, 𝑏 ∈ 𝑆 such that 𝑓 (𝑎) = 𝑝 and
𝑓 (𝑏) = 𝑞. Since 𝑆 is path-connected, there exists a continuous map 𝛾 : [0, 1] → R𝑛 such that
𝛾(0) = 𝑎 and 𝛾(1) = 𝑏 and the range of 𝛾 lies inside 𝑆. Since the range of 𝛾 lies inside the domain
of 𝑓 , we may define the map 𝑓 ◦ 𝛾 : [0, 1] → R𝑚 . An illustration is below.
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It suffices to show that the parametric curve 𝑓 ◦ 𝛾 is continuous, has range lying in 𝑓 (𝑆), starts at 𝑝,
and ends at 𝑞. Since 𝑓 and 𝛾 are continuous, it follows that 𝑓 ◦ 𝛾 is continuous. The range of 𝛾 lying
in 𝑆 implies that the range of 𝑓 ◦ 𝛾 lies in 𝑓 (𝑆). Finally, 𝑓 ◦ 𝛾(0) = 𝑓 (𝑎) = 𝑝 and 𝑓 ◦ 𝛾(1) = 𝑓 (𝑏) = 𝑞,
so we have indeed found a continuous function from 𝑝 to 𝑞.

You can see this theorem in action with a difficult-to-describe set.

Example 2.9.6 Recall the set 𝐵 = {(𝑥𝑦, 𝑦𝑧, 𝑥𝑧) : 0 ≤ 𝑥, 𝑦, 𝑧 ≤ 1} and the continuous
function 𝑓 : R3 → R given by 𝑓 (𝑥, 𝑦, 𝑧) = (𝑥𝑦, 𝑦𝑧, 𝑥𝑧). Since the cube [0, 1]3 is
path-connected, it follows that 𝐵 = 𝑓

(
[0, 1]3

)
is also path-connected.

By taking 𝑆 = [𝑎, 𝑏] and 𝑚 = 𝑛 = 1 in 2.9.5, we have actually recovered the intermediate value
theorem over R.

Corollary 2.9.7 Let 𝑓 be a real-valued function defined on [𝑎, 𝑏], if 𝑓 is continuous
on [𝑎, 𝑏], then 𝑓 ([𝑎, 𝑏]) is parth-connected.

Remark 2.9.8 As [𝑎, 𝑏] is compact, 𝑓 ([𝑎, 𝑏]) is a compact path-connected set. You
can verify that the only compact path-connected sets in R are closed intervals, so
𝑓 ([𝑎, 𝑏]) = [𝑐, 𝑑] for some 𝑐, 𝑑 ∈ R with 𝑐 ≤ 𝑑.

Generalizing a core theorem from calculus like the IVT is a major step towards understanding
multivariable calculus. In the next section, we will talk about another generalization from single
variable calculus: the extreme value theorem.

77



Chapter 2. Topology

2.10 Global extrema

Multivariable optimization is one of the most fundamental applications of calculus. Over several
chapters of this textbook, we will develop basic techniques for solving these optimization problems.
You must first address a simple yet deceptively challenging question:

For a given optimization problem, does a solution exist?

Of course, one way is to actually find the solution itself and prove it is optimal, but this is not
a good method to execute in general. Even worse, we might be searching for a solution which
doesn’t exist. In this section, we will characterize a broad class of optimization problems where
we are guaranteed the existence of a solution

2.10.1 definitions of global extreme

Definition 2.10.1 Let 𝐴 ⊆ R𝑁 and let 𝑓 be a real-valued function defined on 𝐴.

• A point 𝑝 ∈ 𝐴 is a global maximum point of 𝑓 on 𝐴 if 𝑓 (𝑝) ≥ 𝑓 (𝑥) for all
𝑥 ∈ 𝐴.

• If a maximum point of 𝑓 on 𝐴 exists, then 𝑓 attains a global maximum on 𝐴

The definitions of minimum point, minimum value, and attaining a minimum are
similar.

Example 2.10.2 Consider 𝑓 (𝑥, 𝑦) = 𝑥2 +4𝑦2 −2𝑥2𝑦−2 on the rectangle𝐴 = [−1, 1]×
[−1, 1]. The graph of 𝑓 is below which you can also view on Math3D.

From looking at the graph, you can see that 𝑓 attains its minimum value at (0, 0)
and its maximum values at (1,−1) and (−1,−1). Note that there may be multiple
points of 𝐴 at which 𝑓 attains its minimum or maximum. Moreover, notice that the
minimum is attained on the interior of 𝐴, whereas the maxima are attained on the
boundary of 𝐴. If you consider 𝑓 on the subset 𝐵 = (−1, 1)2 then 𝑓 still attains its
minimum on 𝐵 since (0, 0) ∈ 𝐵 but it does not attain a maximum on 𝐵. You can get
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arbitrarily close to (−1, 1) or (−1,−1) on 𝐵 but you cannot reach either point. While
𝑓 is continuous on 𝐴 and continuous on 𝐵, the issue is that 𝐵 is not closed whereas
𝐴 is closed (and hence contains its boundary).

Example 2.10.3 Let 𝐴 = [0, 2] × [0, 2]. Define 𝑓 : 𝐴 → R by 𝑓 (0, 0) = −1 and
𝑓 (𝑥, 𝑦) = −1

𝑥2+𝑦2 otherwise. While 𝐴 is closed, notice 𝑓 is not continuous on 𝐴. In
fact, as (𝑥, 𝑦) → (0, 0), 𝑓 (𝑥, 𝑦) → −∞ so 𝑓 does not attain a minimum on 𝐴. It does,
however, attain its maximum at (2, 2). You can view these features in its graph,
which can you also view on Math3d.

Example 2.10.4 Let 𝐴 = R2. Define 𝑓 : 𝐴→ R by

𝑓 (𝑥, 𝑦) =
3
��sin

(
𝑥2 + 𝑦2) ��+ 3

𝑥2 + 𝑦2 + 1

The domain𝐴 = R2 is unbounded and you can check that 𝑓 is continuous. It attains
its maximum on 𝐴 at (0, 0). You can check that 𝑓 (𝑥, 𝑦) > 0 always yet 𝑓 (𝑥, 𝑦) → 0
as ∥(𝑥, 𝑦)∥ → ∞. You can prove that this implies that 𝑓 has no minimum on 𝐴.
These features can be seen in its graph which you can view on Math3D.

With these examples, we observe that the key ingredients to guarantee the existence of extreme is
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that the function should be continuous and the domain should be closed and bounded.

2.10.2 Extreme value theorem

Collecting all of these observations, it is quite easy to formulate the generalization of the extreme
value theorem to R𝑛 .

Theorem 2.10.5 (Extreme value theorem)
If 𝐴 ⊆ R𝑛 is a non-empty compact set and the map 𝑓 : 𝐴 → R is continuous, then
𝑓 attains it maximum and minimum values at points of 𝐴.

Proof. It suffices to show a maximum is attained since the proof for the minimum is similar. Since
𝑓 is continuous on 𝐴 and 𝐴 is compact, it follows that 𝑓 (𝐴) is compact. By Bolzano-Weierstrass,
this implies 𝑓 (𝐴) is a bounded subset of R so the quantity

𝑀 = sup 𝑓 (𝐴) = sup 𝑦 : 𝑦 ∈ 𝑓 (𝐴)

is finite. It remains to show there exists 𝑝 ∈ 𝐴 such that 𝑓 (𝑝) = 𝑀 By definition of the supremum,
for each 𝑘 ∈ N+, there exists 𝑦(𝑘) ∈ 𝑓 (𝐴) such that

𝑀 − 1
𝑘
< 𝑦(𝑘) ≤ 𝑀.

As 𝑘 → ∞, this implies that 𝑦(𝑘) → 𝑀 so 𝑀 is a limit point of 𝑓 (𝐴). Since 𝑓 (𝐴) is compact and
hence closed, it follows that 𝑀 ∈ 𝑓 (𝐴). Therefore, there exists 𝑝 ∈ 𝐴 such that 𝑓 (𝑝) = 𝑀.

Now, equipped with the extreme value theorem,we can use it to guarantee the existence of a
solution to an optimization problem.

Example 2.10.6 At a given moment, is there a hottest point on the Earth? The
Earth can be roughly viewed as the unit sphere 𝑆2 in R3. Let 𝑇(𝑥, 𝑦, 𝑧) be the
temperature in Celsius at a given point (𝑥, 𝑦, 𝑧) ∈ 𝑆2, so 𝑇 : 𝑆2 → R. Presumably,
temperature should vary continuously across the Earth’s surface so𝑇 is continuous.
The sphere 𝑆2 is compact so by the extreme value theorem 𝑇 attains its maximum
and minimum on 𝑆2. A maximum point 𝑝 ∈ 𝑆2 of 𝑇 corresponds to the hottest
point on Earth.

Example 2.10.7 Can you find extrema for 𝑓 on the open rectangle 𝐵 = (−1, 1)2 ?
The extreme value theorem guarantees you nothing here since 𝐵 is not compact.
Extrema may or may not exist; in this case, a minimum exists and a maximum does
not but anything can happen in general.
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Example 2.10.8 Recall Example 2.10.3 where 𝐴 = [0, 2]2 and 𝑓 : 𝐴 → R is defined
by 𝑓 (0, 0) = -1 and 𝑓 (𝑥, 𝑦) = − 1

𝑥2+𝑦2 otherwise. Can you find extrema for 𝑓 on
𝐴 ? The extreme value theorem again gives no direct information since 𝑓 is not
continuous on 𝐴. Extrema may or may not exist; in this case, a maximum exists
but a minimum does not.

Despite these setbacks, the extreme value theorem can still be used to prove the existence of
extrema for non-compact sets. Here is one such result.

Lemma 2.10.9 Let 𝐴 ⊆ R𝑛 be closed and unbounded. Let 𝑓 be a continuous real-
valued function on 𝐴. If 𝑓 (𝑥) → ∞ as | |𝑥 | | → ∞ in 𝐴, then 𝑓 attains a maximum
on 𝐴.

Proof. Fix 𝑘 ∈ R𝑛

There are many more result of this type which we will not list, rather you can formulate them
yourself and prove them with a clever application of the extreme value theorem for compact sets.
This concludes our discussion on topology, and we are now ready to build differential calculus in
higher dimensions!
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In this chapter, we will devote our time in trying to unravel the definition of the derivatives for
maps R𝑛 → R𝑚 , and it will take a long and winding road. In the beginning, we will try to reduce
the definition to differentiation of single variable maps R to R. This will be quite successful for
the special case of parametric curves and somewhat successful for real-valued functions.
However, this attempt to generalize "rates" and "slopes" to higher dimension will not be enough,
because those notions are in the end, a one-dimensional intuition. The crucial insight from calculus
will be to interpret single variable derivatives via linear approximations.
The ultimate definition of derivative for any map R𝑛 → R𝑚 will require both linear algebra and
calculus, and following the underlying philosophy of

Nonlinear maps are well approximated by linear maps.

This will be discovered by viewing derivatives from four different perspective: physical, geometric,
analytic, and algebraic. By translating between these overarching viewpoints, you will hopefully
truly understand derivatives.

3.1 Derivatives of one variable

In this section, we will look at the very special case of derivatives for maps of one variables, that
is, derivatives of parametric curves which are of the form

R → R𝑚 .
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These are a very special case as we can quickly reduces to single variable calculus, and we can use
it to build familiarity with the four viewpoints of the derivative.

3.1.1 Definition

Definition 3.1.1 Let 𝐴 ⊆ R and let 𝑓 : 𝐴 → R𝑚 be a funiton. Let 𝑎 be an interior
point of 𝐴. The derivative of 𝑓 at 𝑎 is defined to be

𝑓 ′(𝑎) = lim
ℎ→0

𝑓 (𝑎 + ℎ) − 𝑓 (𝑎)
ℎ

,

provided the limit exists. If it does, then 𝑓 is differentiable at 𝑎.

This definition is visually identical to what was introduced in single variable calculus. however,
notice that ℎ ∈ R is a scalar which approaches 0, while the limit quantity 𝑓 (𝑎+ℎ)− 𝑓 (𝑎)

ℎ
is a scalar

multiplied by a vector. This implies that 𝑓 ′(𝑎) ∈ R𝑚 . More, the limit is equivalent to

𝑓 ′(𝑎) = lim
𝑥→𝑎

𝑓 (𝑥) − 𝑓 (𝑎)
𝑥 − 𝑎

by using composition. Lastly, the derivative is only defined at interior points of 𝐴 for simplicity.

Example 3.1.2 Let 𝑓 : R → R2 be defined by 𝑓 (𝑥) = (cos 𝑥, sin 𝑥). Notice

𝑓 ′(𝜋) = lim
ℎ→0

(cos(𝜋 + ℎ), sin(𝜋 + ℎ)) − (cos𝜋, sin𝜋)
ℎ

= lim
ℎ→0

(
cos(𝜋 + ℎ) − cos𝜋

ℎ
, sin(𝜋 + ℎ) − sin𝜋

ℎ

)
=

(
lim
ℎ→0

cos(𝜋 + ℎ) − cos𝜋
ℎ

, lim
ℎ→0

sin(𝜋 + ℎ) − sin𝜋
ℎ

)
These are the derivatives of cos 𝑥 and sin 𝑥 at 𝑥 = 𝜋, so the above is (− sin𝜋, cos𝜋) =
(0,−1). Hence, 𝑓 is differentiable at 𝜋 and 𝑓 ′(𝜋) = (0,−1).

3.1.2 Basic properties

The prior example shows that derivatives of parametric curves can be calculated very easily.

Lemma 3.1.3 Let 𝐴 ⊆ R and let 𝑓 = ( 𝑓1, ..., 𝑓𝑚) : 𝐴→ R𝑚 . Let 𝑎 be an interior point
of 𝐴. The function is differentiable at 𝑎 if and only if for every 𝑖 ∈ {1, ...,𝑚}, the
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component function 𝑓𝑖 s differentiable at 𝑎. If so,

𝑓 ′(𝑎) = ( 𝑓 ′1(𝑎), ..., 𝑓
′
𝑚(𝑎)) =


𝑓 ′1(𝑎)

...
𝑓 ′𝑚(𝑎)

 .

Proof. This follows immediately from the fact that the limit of a function can be calculated compo-
nent wise.
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4.1 TODO

4.2 TODO

4.3 Convergence tests

Now that we have learnt the basic of calculating improper integral and the monotone convergence
theorem, the question becomes how do we deal with them without direct computation and analyze
functions that are both positive and negative.
With the tool given in single variable calculus. The many comparison tests for integrals are quite
easy to establish in multivariable calculus as the ideas are almost identical.

4.3.1 Basic comparison test

The simplest comparison test follows exactly as in single variable calculus, and can be proved
with the monotone convergence theorem.

Theorem 4.3.1 Let Ω ⊆ R𝑛 be a set with an exhaustion by compact Jordan mea-
surable sets. Let 𝑓 and 𝑔 be real-valued locally integrable functions on Ω.
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1. If 0 ≤ 𝑓 ≤ 𝑔 on Ω and
∫
Ω
𝑔𝑑𝑉 converges, then

∫
Ω
𝑓 𝑑𝑉 converges.

2. If 0 ≤ 𝑓 ≤ 𝑔 on Ω and
∫
Ω
𝑓 𝑑𝑉 diverges, then

∫
Ω
𝑔𝑑𝑉 diverges.

For functions which may be positive or negative, recall that with infinite series of real numbers
back in first year. We can the notion of absolute convergence. That is,

Let {𝑎𝑛}𝑛 ⊆ R. If
∑
𝑛 |𝑎𝑛 | converges, then

∑
𝑛 𝑎𝑛 converges.
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