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1. Introduction

Section 1. Introduction

1.1. Definition: The real number is a complete ordered field.

1.2. Definition: A field is a set F with two binary operations, +, and ·, which satisfies:

P1. Associative law for addition

P2. Existence of an additive identity

P3. Existence of additive inverse

P4. Commutative law for addition

P5. Associative law for multiplication

P6. Existence of a multiplicative identity

P7. Existence of multiplicative inverses

P8. Commutative law for multiplication

P9. Distributive law

a+ (b+ c) = (a+ b) + c.

a+ 0 = 0 + a = a.

a+ (−a) = (−a) + a = 0.

a+ b = b+ a.

a · (b · c) = (a · b) · c.
a · 1 = 1 · a = a; 1 ̸= 0.

a · a( − 1) = a( − 1) · a = 1 for a ̸= 0.

a · b = b · a.
a · (b+ c) = a · b+ a · c.

1.3. Remark:

• 0 is unique. (0 = 0 + 0′ = 0′)
• −a is unique.

• For all a, b, (−a) · b = −(ab)

• For all a, b, (−a) · (−b) = a · b
• For all a, b, a− b = b− a ⇐⇒ a · (1 + 1) = b · (1 + 1)

1.4. Definition: Given a field F . F is an ordered field if and only if there exist a subset
P ∈ F which is closed under addition and multiplication, and satisfies the Trichotomy Law, i.e.

P10. (Trichotomy law) For every number a ∈ F , one and only one of the following holds:

• a = 0,

• a ∈ P ,

• −a ∈ P

P11. If a, b ∈ P , then a+ b ∈ P .

P12. If a, b ∈ P , then a× b ∈ P .

1.5. Remark: if P ∈ F is an ordered field, then 1 ∈ P
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1. Introduction

1.6. Definition: The absolute value of a is

|a| :=

{
a if a >= 0

−a if a < 0

1.7. Theorem: Triangle inequality and reverse triangle inequality:

|x+ y| ≤ |x|+ |y|, ||x| − |y|| ≤ |x− y|.

Proof. Note |x| = max{x,−x} and ±x ≤ |x|, then

a+ b ≤ |a|+ |b| and − (a+ b) ≤ |a|+ |b|,

which gives the first inequality, then we can use it to get the second statement:

|x+ (−y) + y| ≤ |x− y|+ |y| and |y + (−x) + x| ≤ |y − x|+ |x|

which means

|x| − |y| ≤ |x− y| and |y| − |x| ≤ |y − x|

which gives the second inequality.

1.8. Definition: A set A of elements of an ordered field F is bounded above(resp. below)
if there exists an upper(resp. lower) bound b ∈ F , such that b ≥ a (resp. b ≤ a) for all a ∈ A.
A least upper bound (supremum)(resp. greatest lower bound/infimum) b0 of A is an upper
bound of A and if b is any upper(resp. lower) bound, b0 ≤ b (resp. b0 ≥ b).

1.9. Proposition: The supremum and infimum of a set is unique if it exists. inf (A) ≤ sup
(A) if they both exist

1.10. Definition: F is a complete ordered field if and only if for every nonempty subset of A
such that A which is bounded above has a least upper bound.

1.11. Theorem: A complete ordered field exist and a complete ordered field is unique up to
isomorphism

1.12. Corollary:
1) For every real number x, there is an integer k such that k > x
2)For any ϵ > 0, there is an n > 0 such that 0 < 1

n < ϵ
3) Let x, y ∈ R, if y − x > 1, then there is an k ∈ Z with x < k < y.
4) x < y ∈ R, then there is a r ∈ Q such that x < r < y

1.13. Theorem: There exist an element x ∈ R with x2 = 2, i.e., 2 has a square root.
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1. Introduction

Proof. Let

A = {x ∈ R|x2 < 2},

clearly A is non-empty and 3
2 is an upper bound for A. Since R is a complete ordered field, there

exist an x = sup(A) ∈ R that is the least upper bound of A.
Claim: x2 = 2.
Suppose not, then first suppose x2 < 2, and we will show that for some small δ > 0, (x + δ)2 < 2
which contradicts the fact that x = sup(A) as x < x+ δ ∈ A.
To find δ > 0 with

(x+ δ)2
?
< 2,

is the same as

x2 + 2xδ + δ2
x
< 2

δ(2x+ δ) = 2xδ + δ2
?
< 2− x2

since x < 3/2,

2x+ δ ≤ 3 + δ,

hence we can simply our inequality to

δ(2x+ δ) ≤ δ(3 + δ)
?
< 2− x2.

since we want δ small, lets just take δ < 1, then we get

δ(3 + δ) ≤ 4δ
?
< 2− x2

Solving for delta, we get

0 < δ < min(1,
1

4
(2− x2)).

Note that we have chosen to include the condition δ ≤ 1 but it is not needed. To finish the
argument, we can work backwards: let δ be defined as above, then

δ(2x+ δ) ≤ δ(3 + δ) ≤ 4δ < 2− x2

which implies

x2 + 2xδ + δ2 < 2 =⇒ (x+ δ)2 < 2.

As required, hence x2 < 2 happen. An analogous argument can be made to show that x2 > 2 is
impossible. Therefore, x2 = 2.
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2. Proving with Induction

Section 2. Proving with Induction

2.1. Definition (Principal of mathematical induction):
Let P be a predicate such that

(1). P (1) is true.

(2). P (k) =⇒ P (k + 1).

Then P (k) is true for all natural number k.

2.2. The principle of mathematical induction may be formulated in an equivalent way that is
better suited in a mathematical discussion.

2.3. Definition: Suppose A is any collection of natural numbers, then

(1). 1 ∈ A,

(2). k ∈ A =⇒ k + 1 ∈ A

then A = N.

2.4. Definition (Complete induction): If A is a set of natural numbers and

(1). 1 ∈ A,

(2). 1, ..., k ∈ A =⇒ k + 1 ∈ A,

then A = N.

2.5. Theorem (Well ordering principle): If A is a nonempty subset of N, then A has a
least element.

2.6. Proposition: If m is any integer and n is a positive integer, there exist unique q and r
such that m = qn+ r and 0 ≤ r < n

Proof. Let m, q, r ∈ Z, n ∈ Z+, A = {m − qn|q ∈ Z} ∩ N, clearly A is nonempty, since if m >= 0
then m ∈ A when q = 0, and if m < 0, then the element m− qn such that q is the smallest integer
such that m− qn > 0 is in the set.
By the well ordering principle, there exist a smallest element m− qn = r ∈ A where r > 0.
To prove r < n, assume the opposite, so r ≥ n, then m− qn ≥ n which implies m− n(q + 1) ≥ 0.
However, this number also satisfies the conditions to be in A and is smaller than r, which is a
contradiction as we claimed r to be the smallest element in A.
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3. Functions

2.7. Theorem: Mathematical induction ⇔ Complete Mathematical induction⇔ Well Ordering

Proof. MI ⇒ CMI: Let S = {k ∈ N|1, ..., k ∈ N =⇒ k + 1 ∈ S} and that 1 ∈ S. Assume MI,
we want to show S = N, that is, CMI is true. Let A = {k ∈ N|1, ..., k ∈ S}, then 1 ∈ A. Assume
k ∈ A, then by definition of S, k + 1 ∈ S, and hence k + 1 ∈ A, by mathematical induction, we
have A = N, hence S = N, as required.
CMI ⇒ WO: Suppose we have a nonempty set A = {a ∈ N} and B = {n ∈ N|n /∈ A}, we want
to show 1 ∈ A. Suppose not, A does not have a minimal element,this means 1, ..., k ∈ B which
implies 1, ..., k /∈ A =⇒ k + 1 /∈ A, as otherwise it would the least element of A. Then by strong
induction, N ∈ B and A = ∅, which is a contradiction. Thus 1 ∈ A.
WO ⇒ MI: Suppose we have a set P such that 1 ∈ P and n ∈ P ⇒ n + 1 ∈ P , we want to
show P = N. Suppose not, then we have a non-empty set S = {n ∈ N|n /∈ P}. By WO, there
exist a least element in S which is not 1. Let k be its least element, then k − 1 /∈ S which implies
k − 1 ∈ P . But by definition of P , k − 1 ∈ P =⇒ k ∈ P , which is a contradiction. Thus P = N
and WO ⇒ MI.

2.8. Theorem (Fundamental Theorem of Arithmetic): Every positive integer except 1
can be represented in one way up to isomorphism as a product of one or more primes.

Proof. Base case: 2 = 2, 3 = 3, 4 = 2 · 2, 5 = 5, clearly, first few numbers can be factored into
primes.
Inductive step: Suppose every number n ≤ k can be factored in to product numbers. We consider
k+1, it is either a prime in which case we are done, or a composite number, thus it can be written
as the product of 2 factors, so k + 1 = n1n2 s.t. n1, n2 ∈ Z and 2 <= n1, n2 < k + 1. By induction
hypothesis, n1 can be written in the form of p1p2...pk and n2 can be written in the form of q1q2...qr.
Multiplying them, we get p1q1p2q2...pkqr. Therefore, since k+1 is a product of prime numbers, by
strong induction, all n ∈ Z, n > 1 can be written uniquely as a prime numbers.

Section 3. Functions

3.1. Definition: A function f : A → B is a subset S ⊆ A×B, where

(1). we write f(a) = b if (a, b) ∈ S

(2). ∀a ∈ A,∃(a, b) ∈ S

(3). if (a1, b1), (a2, b2) ∈ S, then a1 = a2 ⇒ b1 = b2

3.2. Remark:
Domain: dom f = {a ∈ A|∃b ∈ B, (a, b) ∈ S}
Range: ran f = {b ∈ B|∃(a, b) ∈ S}
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3. Functions

3.3. Theorem (Formula for an ellipse): x2

a2
+ y2

b2
= 1

Proof. An ellipse is defined as the set of points whose distance from each of two ”focus” adds up
to the same value. For convinience, let them be (−c, 0), (c, 0), and the sum of distances to be 2a
Using the distance formula:√

(x− (−c))2 + y2 +
√
(x− c)2 + y2 = 2a√

(x+ c)2 + y2 = 2a−
√

(x− c)2 + y2

x2 + 2cx+ c2 + y2 = 4a2 − 4a
√
(x− c)2 + y2 + x2 − 2cx+ c2 + y2

4(cx− a2) = −4a
√
(x− c)2 + y2

c2x2 − 2cxa2 + a4 = a2(x2 − 2cx+ c2 + y2)

(c2 − a2)x2 − a2y2 = a2(c2 − a2)

x2

a2
+

y2

a2 − c2
= 1

we usually let b =
√
a2 − c2 so the equation becomes

x2

a2
+

y2

b2
= 1

3.4. Remark: The hyperbola is defined analogously, except we require the difference of the
two distances to be constant√

(x− (−c))2 + y2 −
√

(x− c)2 + y2 = ±2a, =⇒ x2

a2
− y2

a2−c2
= 1

However, in this case, we must choose c > a, so a2 < c2 = 0, otherwise its a ellipse. So let

b =
√
c2 − a2, and get x2

a2
− y2

b2
= 1
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4. Limits

Section 4. Limits

4.1. Definition (Delta-Epsilon): The function f approches the limit l near a means:

∀ϵ > 0,∃δ > 0, s.t.∀x, 0 < |x− a| < δ =⇒ |f(x)− l| < δ

4.2. Definition (Uniqueness of Limit): If a function f approaches l near a, and approaches
m near a, then l = m

Proof. Suppose the limit is not unique, then

∀ϵ > 0,∃δ1 > 0, s.t. ∀x, 0 < |x− a| < δ1 =⇒ |f(x)− l| < ϵ

and

∀ϵ > 0, ∃δ2 > 0, s.t. ∀x, 0 < |x− a| < δ2 =⇒ |f(x)−m| < ϵ

We used δ1 and δ2 since we can’t ensure that the δ which satisfy one definition will work in the
other. However, it is easy to conclude that for all ϵ > 0, there will be some δ > 0 that works if we
just simply choose δ = min(δ1, δ2). Now let ϵ = |l−m|

2 , it follows that

0 < |x− a| < δ =⇒ |f(x)−m| < |l −m|
2

and |f(x)− l| < |l −m|
2

By triangle inequality,

|l −m| = |l − f(x) + f(x)−m| <= |f(x)− l|+ |f(x)−m| < 2 · |l −m|
2

= |l −m|

which is a contradiction.

Intuitively, we can think of [l − ϵ, l + ϵ] as the range of possible f(x), such that no matter
what ϵ we are given, we can always find a δ such that any x in the interval [x− δ, x+ δ] gives
a f(x) ∈ [l − ϵ, l + ϵ]

4.3. Theorem: If limx→a f(x) = l and limx→a g(x) = m, then

(1). limx→a(f + g)(x) = l +m.

(2). limx→a(f · g)(x) = l ·m.

(3). If m ̸= 0, limx→a(
1
g )(x) =

1
m .

4.4. Lemma (1): If |x− x0| < ϵ
2 and |y − y0| < ϵ

2 , then |(x+ y)− (x0 + y0)| < ϵ

Proof.

|(x+ y)− (x0 + y0)| = |(x− x0) + (y − y0)| ≤ |x− x0|+ |y − y0| <
ϵ

2
+

ϵ

2
= ϵ
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4. Limits

4.5. Lemma (2): If |x− x0| < min(1, ϵ
2(|y0|+1)) and |y − y0| < ϵ

2(|x0|+1) , then |xy − x0y0| < ϵ

Proof. |x| − |x0| ≤ |x− x0| < 1 =⇒ |x| < 1 + |x0|.

|xy − x0y0| = |xy − xy0 + xy0 − x0y0| ≤ |x(y − y0)|+ |y0(x− x0)|
≤ |x| · |y − y0|+ |y0| · |x− x0|

< (1 + |x0|) ·
ϵ

2(|x0|+ 1)
+ |y0| ·

ϵ

2(|y0|+ 1)

<
ϵ

2
+

ϵ

2
= ϵ

4.6. Lemma (3): If y0 ̸= 0 and |y − y0| < min( |y0|2 , ϵ|y0|
2

2 ), then y ̸= 0 and | 1y − 1
y0
| < ϵ

Proof. |y0| − |y| ≤ |y − y0| < |y0|
2 =⇒ |y| > |y0|

2 . Clearly y ̸= 0 so 1
|y| <

2
y0
.

|1
y
− 1

y0
| = |y0 − y|

|y| · |y0|
<

2

|y0|
· 1

|y0|
· ϵ|y0|

2

2
= ϵ

Proof. Now to prove each theorem in 4.3:
(1) The hypothesis states that there are δ1, δ2 > 0 such that for all x,

0 < |x− a| < δ1 =⇒ |f(x)− l| < ϵ

2
and 0 < |x− a| < δ2 =⇒ |f(x)− l| < ϵ

2

Let δ = min(δ1, δ2), so that 0 < |x − a| < δ implies both implication. By lemma 1, this implies
|(f + g)(x)− (l +m)| < ϵ
(2) Similarly,

0 < |x−a| < δ1 =⇒ |f(x)−l| < min(1,
ϵ

2(|m|+ 1)
) and 0 < |x−a| < δ2 =⇒ |f(x)−l| < ϵ

2|l|+ 1

Let δ = min(δ1, δ2), thus if 0 < |x − a| < δ, both implication stands and by lemma 2,this implies
|(f · g)(x)− l ·m| < ϵ.
(3) If ϵ > 0 then there exist δ > 0 such that for all x,

0 < |x− a| < δ =⇒ |g(x)−m| < min(
|m|
2

,
ϵ|m|2

2
)

By lemma 3, this implies g(x) ̸= 0 and |(1g )(x)−
1
m | < ϵ
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4. Limits

4.7. Lemma: If |g(x)−m| is small we want estimates

|g(x)| < 1 + |m| and if m ̸= 0,
|m|
2

< |g(x)|

Alternative proof. (1)Let

ϵ1 =
ϵ

2
, ϵ2 =

ϵ

2

Given any ϵ > 0,

0 < |x− a| < δ =⇒ |(f + g)(x)− l −m| < ϵ

|f(x)− l + g(x)−m| ≤ |f(x)− l|+ |g(x)−m| < ϵ1 + ϵ2 = ϵ

(2)Suppose ϵ1, ϵ2 < 1, then

ϵ1ϵ2 =
1

2
(ϵ1ϵ2 + ϵ1ϵ2) <

1

2
(ϵ1 + ϵ2)

we have 0 < |x− a| < δ =⇒ |(f · g)(x)− l ·m| < ϵ

|f(x)g(x)− l ·m| = |(f(x)− l)g(x) + lg(x)−m|
= |(f(x)− l)(g(x)−m) +m(f(x)− l) + l(g(x)−m)|
≤ |f(x)− l||g(x)−m|+ |m||f(x)− l|+ |l||g(x)−m|
< ϵ1ϵ2 + |m|ϵ1 + |l|ϵ2

<
1

2
(ϵ1 + ϵ2) + |m|ϵ1 + |l|ϵ2

= ϵ1(
1

2
+ |m|) + ϵ2(

1

2
+ |l|)

?
< ϵ

Take

δ1 s.t. ϵ1 =
ϵ

2
· 1
1
2 + |m|

δ2 s.t. ϵ2 =
ϵ

2
· 1
1
2 + |l|

ϵ1 = min(1,
ϵ

1 + 2|m|
), ϵ2 = min(1,

ϵ

1 + 2|l|
)

We take δ = min(δ − 1, δ2) and we get LHS < ϵ
(3) by (2),

|f(x)
g(x)

− l

m
|

?
< ϵ

is the same as solving whether

| 1

g(x)
− 1

m
|

?
< ϵ, or

|g(x)−m|
|g(x)||m|

?
< ϵ
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To solve this we first prove the above + below lemma
Proof: Suppose |g(x)| − |m| < |g(x)−m| < 1, then above: |g(x)| < 1 + |m|
Suppose |m| − |g(x)| < |g(x)−m| < |m|

2 , then below: |m| < |m|
2 + |g(x)| =⇒ |m|

2 < |g(x)|
Back to proving (3), now supposed |g(x)−m| < |m|

2 (m ̸= 0)
then

|g(x)−m|
|g(x)||m|

<
|g(x)−m|

|m|
2 |m|

=
2

|m|2
|g(x)−m|

?
< ϵ

.
Take δ s.t. |g(x)−m| < min( |m|

2 , ϵ
2 · |m|2) and we get the desired equation.

4.8. Intuition: The lemmas (1,2,3) we proved is merely saying that, when x is close to x0, and
y is closed to y0, then x + y will be closed to x0 + y0, and xy will be close to x0y0, and

1
y will be

closed to 1
y0

4.9. Definition: Sometimes we would like to only speak about the limit of f approaches some
a on one side. In that case, we have limit from above and below which are defined as:

lim
x→a+

f(x) = l if ∀ϵ > 0,∃δ > 0, s.t. ∀x, 0 < x− a < δ =⇒ |f(x)− l| < ϵ

lim
x→a−

f(x) = l if ∀ϵ > 0,∃δ > 0, s.t. ∀x, 0 < a− x < δ =⇒ |f(x)− l| < ϵ

4.10. Note: When talking about the limit of f(x) as x approaches ∞, or limx→∞ f(x), we
often call this the limit at infinity, and it is defined as:

∀ϵ > 0, ∃N, s.t.∀x, x > N =⇒ |f(x)− l| < ϵ

4.3 also works on limits to inifinity if we take N = max(N1, N,2)

4.11. Note: When we talk about an infinite limit at a point a, we say that the limit of f(x) as
x approaches a diverges to inifinity,

∀M > 0, ∃δ > 0, s.t. ∀x, 0 < |x− a| < δ =⇒ f(x) > M

11



5. Supplementary: Countable Sets

Section 5. Supplementary: Countable Sets

5.1. Definition: A set A is countable if there is a surjective function f : N → A

5.2. Fact:

(1). A is finite =⇒ countable

(2). A ∈ N =⇒ countable

(3). If B → A surjective then B countable =⇒ A countable

(4). A ⊆ B then B countable =⇒ A countable

(5). Q is countable

(6). R is not countable

(4). Suppose B is countable, let f be the surjective map from N → B, let f−1 = {n|f(n) ∈ A}.
Since f : f−1(A) ⊂ N → A is surjective we have that A is countable

(5). Let’s write all q ∈ Q as a fraction a
b such that a, b > 0 and they have no common factor.

By the fundamental theorem of arithmetic:

a = pα1
1 · · · parr , b = qβ1

1 · · · qβs
s , αi, βj > 0

We define a function f : Q+ → N which sends a
b 7→ p2α1

1 · · · p2arr · q2β1+1
1 · · · q2βs+1

s ∈ N
Since prime factorization is unique this function is injective and thus a subset of N, therefore Q is
countable.

5.3. Fact: R is uncountable.
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6. Continuous functions

Section 6. Continuous functions

6.1. Definition: The function f is continuous at a if

lim
x→a

f(x) = f(a)

6.2. Definition: If f and g are continuous at a, then

(1). f + g is continuous at a

(2). f · g is continuous at a

(3). If g(a) ̸= 0, then 1
g is continuous at a

Proof. Since f and g are continuous at a, then

lim
x→a

f(x) = f(a) and lim
x→a

g(x) = g(a)

(1) By theorem 4.3,

lim
x→a

(f + g)(x) = lim
x→a

f(x) + lim
x→a

g(x) = f(a) + g(a) = (f + g)(a)

(2) By theorem 4.3,

lim
x→a

(f · g)(x) = lim
x→a

f(x) · lim
x→a

g(x) = f(a) · g(a) = (f · g)(a)

(3)

lim
x→a

(
f

g
)(x) =

f(a)

g(a)
= (

f

g
)(a)

6.3. Note (continuous limit):

∀ϵ > 0, ∃δ > 0, s.t.∀x, |x− a| < δ =⇒ |f(x)− f(a)| < ϵ

6.4. Theorem: If g is continuous at a, and f is continuous at g(a), then f ◦ g is continuous at
a.

Proof. Let ϵ > 0, our goal is to show there exist δ′ > 0 such that

|x− a| < δ′ =⇒ |f(g(x))− f(g(a))| < ϵ

Since g is continuous at a, we know for all ϵ′ that there exist δ′ such that

|x− a| < δ′ =⇒ |g(x)− g(a)| < ϵ′

Since f is continuous at g(a), we know for all ϵ such that

|g(x)− g(a)| < δ =⇒ |f(g(x))− f(g(a))| < ϵ

13



6. Continuous functions

Since δ is just some positive number, we can take it as ϵ′, so then the equation becomes

|x− a| < δ′ =⇒ |g(x)− g(a)| < ϵ′(= δ) =⇒ |f(g(x))− f(g(a))| < ϵ

6.5. Definition: We say f is continuous on (a, b) if it continuous at every point in (a, b).
However, if f is continuous on [a, b], then it is continuous on every point in (a, b) and lima+ f(x) =
f(a) and lima→b− f(x) = f(b)

6.6. Lemma: Suppose f is continuous at a, and f(a) > 0, then there exist δ > 0, such that
f(x) > 0 for all x ∈ |x− a| < δ. Similarly, if f(a) < 0, then there exist δ > 0, such that f(x) < 0
for all x ∈ |x− a| < δ. Similar argument are also correct for one sided limits.

Proof. Consier f(a) > 0, since f is continuous at a, there exist a δ > 0, such that for all ϵ > 0,
|x− a| < δ =⇒ |f(x)− f(a)| < ϵ Since f(a) > 0, take ϵ = f(a), then

|x− a| < δ =⇒ |f(x)− f(a)| < f(a)

which implies f(x) > 0. An analoguous argument can be given for f(a) < 0 by setting ϵ = −f(a).
As well as one sided arguments.
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7. Important theorems

Section 7. Important theorems

7.1. Theorem: Suppose f is, continuous on [a, b] and f(a) < 0 < f(b), then there is some x in
[a, b] such that f(x) = 0.

Proof. Let A = {x ∈ [a, b]|f < 0 on [a, x]}. Then A ̸= ∅ since a ∈ A. By 6.6, there exist an interval
[a, a+δ) such that f(x) < 0 ∀x ∈ [a, a+δ). Similarly, b is an upper bound of A, and since f(b) > 0,
there exist δ > 0 such that all x ∈ b − δ < x ≤ b are upper bounds of A. By P13, there exist a
least upper bound α of A, or sup(A), we now wish to show that f(α) = 0. Suppose first f(α) > 0,
then by 6.6, f(x) > 0 on (α− δ, α+ δ) for some δ > 0. However we know that there is x0 in A in
α− δ < x0 < α, since otherwise α would not be the least upper bound , but then this means that
f(x0) > 0 which is impossible, thus f(α) cannot be larger than 0. Suppose f(α) < 0, then f(x) < 0
on (α − δ, α + δ). Now there is some x0 ∈ A which satisfies α − δ < x0 < α, so f is negative on
[x, x0], but if x1 is a number on the interval [α, α+ δ), then f is negative on the interval [a, x1] so
x1 ∈ A, which is impossible as well. Therefore, f(α) = 0.

7.2. Proposition: If f is continuous on [a, b] and f(a) < c < f(b), then there is some x in
[a, b] such that f(x) = c.

Proof. Let g = f − c, then g is continuous and g(a) < 0 < g(b), by 7.1, there exist x ∈ [a, b] such
that g(x) = 0, which means f(x) = c.

7.3. Proposition: If f is continuous on [a, b] and f(a) > c > f(b), then there is some x in
[a, b] such that f(x) = c.

Proof. −f is continuous on [a, b] and −f(a) < −c < −f(b), by 7.2, there exist x ∈ [a, b] such that
−f(x) = −c, which means f(x) = c.

7.4. Fact: If f is continuous at a, then there is a δ > 0, s.t. f is bounded above on (a−δ, a+δ).
(Also variation on one side limits)

Proof. Since f continuous at a, take ϵ = 1, then we have

∃δ > 0, s.t. |x− a| < δ =⇒ |f(x)− f(a)| < 1 =⇒ f(x) < f(a) + 1

7.5. Theorem: If f is continuous on [a, b], then f is bounded above on [a, b]

Proof. Let A = {x ∈ [a, b]|f is bounded above on [a,x]} By 7.4, A ̸= ∅ as a ∈ A , since b is an
upperbound of A, there exist a supremum of A, lets call α, we want to show that α = b. We know
a < α ≤ b. Suppose α < b, then there is a δ > 0 such that f is bounded on (α− δ, α+ δ). Since α
is the least upper bound there exist x0 in A satisfying α− δ < x0 < α. So f is bounded on [a, x0].
But there also exists x1 such that α < x1 < α+ δ, and so f is bounded on [x0, x1]. Therefore, f is

15
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bounded on [a, x1] which contradicts the fact that α is an upper bound for A, and thus α = b Now
we have proved that f is bounded on [a, x] for all x < b, we are only left to prove that f is indeed
bounded on [a, b]. By 7.4, since b is ’continuous’ from below, there exist δ > 0 s.t. f is bounded on
(b− δ, b]. Take any x in this interval, we know f is bounded on [a, x] and [x, b], hence f is bounded
on [a, b]

7.6. Proposition: If f is continuous on [a, b], then f is bounded below on [a, b], i.e. there is
some number N such that f(x) ≥ N for all x ∈ [a, b]

Proof. The function −f is continuous on [a, b], so by 7.5 there is a number M such that −f(x) ≤ M
for all x ∈ [a, b], which means f(x) ≥ −M for all x ∈ [a, b], so we can let N = −M .

7.7. Corollary: 7.5 and 7.6 together shows that a continuous function f on [a, b] is bounded on
[a, b], i.e., there is a number N such that |f(x)| ≤ N for all x ∈ [a, b]. Suppose we have N1 such
that f(x) ≤ N1, and N2 such that f(x) ≥ N2 for all x ∈ [a, b], we can take N = max(|N1|, |N2|)

7.8. Theorem: If f is continuous on [a, b], then there is a numbre y in [a, b] such that f(y) ≥
f(x) for all x in [a, b]

Proof. Let B = {f(x)|x ∈ [a, b]}. B ̸= 0, and by 7.5, B is bounded above and sup(B) = β exists.
Since β ≥ f(x) for x ∈ [a, b] it suffices to show that β = f(y) for some y ∈ [a, b]. Suppose not, let
g(x) = 1

β−f(x) . Then g is continuous on [a, b] since the denominator is never 0, and by 7.5, g is

bounded on [a, b]. However, by the definition of β, we can find x in [a, b] such that β− f(x) can be
made arbitrary small. That is,

∀ϵ > 0,∃x ∈ [a, b], s.t. β − f(x) < ϵ

This, in turn, means,

∀ϵ > 0∃x ∈ [a, b], s.t. g(x) >
1

ϵ

Which implies g is not bounded on [a, b], contradicting our assumption.

7.9. Proposition: If f is continuous on [a, b], then there is some y in [a, b] such that f(y) ≤ f(x)
for all x in [a, b]

Proof. The function −f is continuous on [a, b], by 7.8, there is some y in [a, b] such that −f(y) ≥
−f(x) for all x ∈ [a, b], which implies that f(y) ≤ f(x) for all x ∈ [a, b]

7.10. Theorem: Every positive number has a square root, in other words, if α > 0, then there
is some number x such that x2 = α

Proof. Consider f(x) = x2 which is continuous. The statement of ”the number α has a square root”
simply means f(x) takes on the value α which is an easy consequence of 7.3. There is obviously a
number b > 0 such that f(b) > α, and α always > 0. So we can apply 7.3 to [0, b].
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7.11. Intuition: The same arugment can be used to prove that a positive number has an
nth root, for all natural number n, and if n happens to be odd, we can actually prove that every
number has an nth root, i.e., if xn = a, then (−x)n = −a

7.12. Theorem: If n is odd, then any equation

xn + an−1x
n−1 + · · ·+ a0 = 0

has a root.

Proof. Consider the function f(x) = xn + an−1x
n−1 + · · ·+ a0. The idea is that for a large |x|, this

function act very much liek g(x) = xn, and since n is odd, f(x) is postive for large positive x, and
negative for large negaive x.

f(x) = xn = an−1x
n−1 + · · ·+ a0 = xn(1 +

an−1

x
+ · · ·+ a0

xn
)

Note that,

|an−1

x
+ · · ·+ a0

xn
| ≤ |an−1|

|x|
+ · · ·+ |a0|

|xn|
.

So lets choose an x satisfying

|x| > 1, 2n|an−1|, ..., 2n|x0| (∗)

Then |xk| > |x| and

|an−k|
|xk|

<
|an−k|
|x|

<
|an−k|

2n|an−k|
=

1

2n

So

|an−1

x
+ · · ·+ a0

xn
| ≤ 1

2n
+ · · ·+ 1

2n
=

1

2

In other words,

−1

2
≤ an−1

x
+ · · ·+ a0

xn
≤ 1

2

Which implies

1

2
≤ 1 +

an−1

x
+ · · ·+ a0

xn

Therefore, if we choose an x1 > 0 which satisfies ∗,
(x1)

n

2
≤ (x1)

n(1 +
an−1

x1
+ · · ·+ a0

(x1)n
) = f(x1)

so that f(x1) > 0, and if we choose an x2 < 0 which satisfies ∗, then

(x2)
n

2
≥ (x2)

n(1 +
an−1

x2
+ · · ·+ a0

(x1)n
) = f(x2)

so f(x2) < 0.
Now we can apply 7.1 to the interval [x2, x1] and conclude that there must be some x in the interval
such that f(x) = 0
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7.13. Theorem: If n is even and f(x) = xn + an−1x
n−1 + · · · + a0, then there is a number y

such that f(y) ≤ f(x) for all x.

Proof. Similar to last proof, if we have M = max(1, 2n|an−1, ..., 2n|a0|), then for all x with |x| ≥ M ,
we have

1

2
≤ 1 +

an−1

x
+ · · ·+ a0

xn

Since n is even, xn ≥ 0 for all x, so

(x)n

2
≤ (x)n(1 +

an−1

x
+ · · ·+ a0

(x)n
) = f(x)

if |x| ≥ M . Now consider f(0), let b > 0 be a number that such bn ≥ 2f(0) and b > M . Then, if
x ≥ b, we have

f(x) ≥ xn

2
≥ bn

2
≥ f(0)

If x ≤ −b, then

f(x) ≥ xn

2
≥ (−b)n

2
=

bn

2
≥ f(0)

Therefore, if x ≥ b or x ≤ −b, then f(x) ≥ f(0).
Apply 7.8 on the interval [−b, b], we conclude that there is a number y such that

−b ≤ x ≤ b =⇒ f(y) ≤ f(x)

In particular, f(y) ≤ f(0) because 0 ∈ [−b, b], thus

x ≤ −b or x ≥ b =⇒ f(x) ≥ f(0) ≥ f(y)

Combining the last two equation we see that f(y) ≤ f(x) for all x.

7.14. Intuition: The idea here is to show first that a minimum f(y) exist on an interval, ex.
[−b, b], then we show that all elements not in the interval are also greater than this minimum.

7.15. Theorem: Consider the equation

xn + an−1x
n−1 + · · ·+ a0 = c

and suppose n is even, then there is a number m such that the equation has a solution for c ≥ m
and has no solution for c < m

Proof. Let f(x) = xn+an−1x
n−1+ · · ·+a0. According to the lsat theorem there is a number y such

that f(y) ≤ f(x) for all x. Let m = f(y), if c < m, then the equation obviously has no solution. If
c = m, then y is a solution. If c > m, let b > y and f(b) > c. Then we have f(y) < c < f(b), and
by IVT, there exist x ∈ [y, b] such that f(x) = c, so x is a solutoin.

7.16. Theorem: N is not bounded above.

18



8. Uniform Continuity

Proof. Suppose N is bounded above, since N ̸= ∅, there eixst a least upper bound α of N, then

a ≥ n ∀n ∈ N

and also

α ≥ n+ 1 ∀n ∈ N

Since n+ 1 ∈ N if n ∈ N, but this means

α− 1 ≥ n ∀n ∈ N

which means α− 1 is also an upper bound for N, contradicting our assumption.

7.17. Theorem: For any ϵ > 0, there is a natural number n with 1
n < ϵ

Proof. Suppose not, then for some ϵ > 0, 1
n ≥ ϵ ∀n ∈ N. Then n ≤ 1

ϵ ∀n ∈ N. But this means that
1
ϵ is an upper bound for N, contradicting out last theorem.

Section 8. Uniform Continuity

8.1. Definition: The function f is uniformly continuous on an interval A if for every ϵ > 0
there is some δ > 0 such that, for all x and y in A,

|x− y| < δ =⇒ |f(x)− f(y)| < ϵ

8.2. Lemma (Splice Lemma): Let a < b < c and let f be continuous on the interval [a, c]
s.t. ∀ϵ > 0

∃δ1 > 0 s.t. ∀x, y ∈ [a, b], |x− y| < δ1 =⇒ |f(x)− f(y)| < ϵ (1)

∃δ2 > 0 s.t. ∀x, y ∈ [b, c], |x− y| < δ2 =⇒ |f(x)− f(y)| < ϵ (2)

Then there is δ > 0 s.t. ∀x, y ∈ [a, c], |x− y| < δ =⇒ |f(x)− f(y)| < ϵ

Proof. Since f is continuous at b, there is a δ3 > 0 such that,

|x− b| < δ3 =⇒ |f(x)− f(b)| < ϵ

2

It follows that

|x− b| < δ3 and |y − b| < δ3 =⇒ |f(x)− f(y)| < ϵ

Now choose δ to be the minimum of δ1, δ2, δ3. Suppose x, y are any two points in [a, c] with
|x − y| < δ. If x, y ∈ [a, b], then |f(x) − f(y)| > ϵ by (1). If x, y ∈ [b, c], then |f(x) − f(y)| < ϵ
by (2). Otherwise, x < b < y or y < b < x, and in either case, since |x − y| < δ, |x − b| <
δ and |y − b| < δ =⇒ |f(x)− f(y)| < ϵ by (3).

8.3. Theorem: If f is continuous on [a, b], then f is uniformly continuous

Proof. tba
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1. Derivatives

Section 1. Derivatives

1.1. Definition: The function f is differentiable at a if

lim
h→0

f(a+ h)− f(a)

h
exists

The limit is denoted by f ′(a) and is called the derivative of f at a.
We define the tangent line to the graph of f at (a, f(a)) to be the line through (a, f(a)) with
slope f ′(a).

1.2. Theorem: If f is differentiable and a, then f is continuous at a.

Proof.

lim
h→0

f(a+ h)− f(a) = lim
h→0

f(a+ h)− f(a)

h
· h

= lim
h→0

f(a+ h)− f(a)

h
· lim
h→0

h

= f ′(a) · 0
= 0

Therefore f is continuous at a

1.3. Theorem: If f is a constant function, f(x) = c, then

f ′(a) = 0 ∀a

Proof.

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
= lim

h→0

c− c

h
= 0

1.4. Theorem: If f is the identity function, f(x) = x, then

f ′(a) = 1 ∀a

Proof.

f ′(a) = lim
h→0

f(a+ h)− f(a)

h

= lim
h→0

a+ h− a

h

= lim
h→0

h

h
= 1
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1. Derivatives

1.5. Theorem: If f and g are differentiable at a, then f + g is also differentiable at a, and

(f + g)′(a) = f ′(a) + g′(a)

Proof.

(f + g)′(a) = lim
h→0

(f + g)(a+ h)− (f + g)(a)

h

= lim
h→0

f(a+ h) + g(a+ h)− [f(a) + g(a)]

h

= lim
h→0

[
f(a+ h)− f(a)

h
+

g(a+ h)− g(a)

h
]

= lim
h→0

f(a+ h)− f(a)

h
+ lim

h→0

g(a+ h)− g(a)

h

= f ′(a) + g′(a)

1.6. Theorem: If f and g are differentiable at a, then

(f · g)′(a) = f ′(a) · g(a) + f(a) · g′(a)

Proof.

(f · g)′(a) = lim
h→0

(f · g)(a+ h)− (f · g)(a)
h

= lim
h→0

f(a+ h) · g(a+ h)− f(a)g(a)

h

= lim
h→0

f(a+ h)[g(a+ h)− g(a)]

h
+

[f(a+ h)− f(a)]g(a)

h

= lim
h→0

f(a+ h) · lim
h→0

g(a+ h)− g(a)

h
+ lim

h→0

f(a+ h)− f(a)

h
· lim
h→0

g(a)

= f(a) · g′(a) + f ′(a) · g(a)

1.7. Theorem: If g(x) = cf(x) and f is differentiable at a, then g is differentiable at a, and

g′(a) = c · f ′(a)

Proof. Let h(x) = c, so g = h · f , by last theorem,

g′(a) = (h · f)′(a)
= g(a) · f ′(a) + h′(a) · f(a)
= c · f ′(a) + 0 · f(a)
= cf ′(a)
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1. Derivatives

1.8. Theorem: If f(x) = xn for some natural number n, then

f ′(a) = nan−1 ∀a

Proof. We prove by induction on n. n = 1 is clearly true as proven above. Now assume that the
theorem is true for n, so if f(x) = xn, then f ′(a) = nan−1. We want to prove this is true for
g(x) = xn+1. Let I(x) = x, then the equation can be written as

g(x) = f(x) · I(x)

By product rule,

g′(a) = (f · I)′(a) = f ′(a) · I(a) + f(a) · I ′(a)
= nan−1 · a+ an · 1
= nan + an · 1
= nan + an

= (n+ 1)an, ∀a

Which is exactly the formula for the case n+ 1

1.9. Note: With this, we can find the derivative of any polyonmial functions, for a polynomial
with degree n,

f (n)(x) = n!an

and for k > n, f (k)(x) = 0

1.10. Theorem: If g is differentiable at a, and g(a) ̸= 0, then 1
g is differentiable at a, and

(
1

g
)′(a) =

−g′(a)

[g(a)]2

Proof. As always, we have

(1g )(a+ h)− (1g )(a)

h

For sufficiently small h, we have to verify that (1g )(a+h) is defined. We know that g is differentiable
at a, therefore g is continuous at a. And it follows from 6.6 that there is some δ > 0 such that
g(a+ h) ̸= 0 for |h| < δ. So the equation does make sense for small enough h.

lim
h→0

(
1
g

)
(a+ h)−

(
1
g

)
(a)

h
= lim

h→0

1
g(a+h) −

1
g(a)

h

= lim
h→0

g(a)− g(a+ h)

h[g(a) · g(a+ h)]

= lim
h→0

−[g(a+ h)− g(a)]

h
· 1

g(a)g(a+ h)

= lim
h→0

−[g(a+ h)− g(a)]

h
· lim
h→0

1

g(a) · g(a+ h)
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1. Derivatives

= −g′(a) · 1

[g(a)]2
.

1.11. Theorem: If f and g are differentiable at a and g(a) ̸= 0, then f/g is differentiable at a,
and

(
f

g
)′(a) =

g(a) · f ′(a)− f(a) · g′(a)
[g(a)]2

Proof. Since f
g = f · (1g ) we have

f

g

′
(a) = (f · 1

g
)′(a)

= f ′(a) · 1
g
(a) + f(a) · 1

g

′
(a)

=
f ′(a)

g(a)
+

f(a)(−g′(a))

[g(a)]2

=
f ′(a) · g(a)− f(a) · g′(a)

[g(a)]

2

1.12. Theorem: If g is differentiable at a, and f is differentiable at g(a), then f ◦ g is
differentiable at a, and

(f ◦ g)′(a) = f ′(g(a)) · g′(a).

Proof. Later.
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Section 2. Significance of the Derivative

2.1. Definition: Let f be a function and A a set of numbers contained in the domain of f . A
point x in A is a maximum point for f on A if

f(x) ≥ f(y) for every y ∈ A

The number f(x) itself is called the maximum value of f on A (and we also say that f has its
maximum value on A at x)

2.2. Remark: Notice that a function f can have several different maximum points on A,
however it can have at most one maximum value. We are typically interested in the case where A
is a closed interval [a, b], if f is continuous, then 7.8 guarantees that f does indeed have a maximum
value on [a, b]

2.3. Theorem: Let f be any function defined on (a, b). If x is a maximum (or a minimum)
point for f on (a, b), and f is differentiable at x, then f ′(x) = 0.

Proof. WLOG, consider the case where f has a maximum at x. If h is any number such that x+h
is in (a, b), then f(x) ≥ f(x+ h), and thus f(x+ h)− f(x) ≤ 0. Thus if h > 0 we have

f(x+ h)− f(x)

h
≤ 0

and consequently

lim
h→0+

f(x+ h)− f(x)

h
≤ 0

. On the other hand, if h < 0, we have

f(x+ h)− f(x)

h
≥ 0 =⇒ lim

h→0+

f(x+ h)− f(x)

h
≥ 0

By our hypothesis, f is differentiable at x so these two limits must be equal each other, and in fact,
equal to f ′(x). This means that

f ′(x) ≤ 0 and f ′(x) ≥ 0

from which it follows that f ′(x) = 0.

2.4. Definition: Let f be a function, and A a set of numbers contained in the domain of f . A
point x in A is a local maximum [minimum] point for f on A if there is some δ > 0 such that
x is a maximum [minimum] point for f on A ∩ (x− δ, x+ δ).

2.5. Theorem: If x is a local maximum or minimum for f on (a, b) and f is differentiable at
x, then f ′(x) = 0

Proof. Trivial
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2. Significance of the Derivative

2.6. Warning: The converse of theorem 2 is obviously not true.

f ′(x) = 0 does not imply that x is a local maximum or minimum point of f

. Consider the simplest example f(x) = x3, in this case f ′(0) = 0, but f has no local maximum of
minimum anywhere.

2.7. Definition: A critical point of a function f is a number x such that

f ′(x) = 0.

The number f(x) iteself is called a critical value of f .

In order to locate the maximum and minimum of f , we have to consider three kinds of points:

• The critical points of f in [a, b]

• The end points a and b.

• Points x in [a, b] such that f is not differentiable at x.

If x is the max/min on [a, b], then it must be in one of the three classes listed above. For if x is not
in the second or third group, then x is in (a, b) and f is differentiable at x, and by 2.3, this means
that x is in the first group.
If there are many points in these three categories, it may be impossible to find the maximum
and minimum of f . But when there are only a few critical points and a few points where f is
not differentiable. We can simply find f(x) for each x satisfying f ′(x) = 0 or where f is not
differentiable at x, and of course, f(a) and f(b). The biggest of these will be the maximum value
of f , and the smallest will be the minimum.

2.8. Theorem (Rolles Theorem): If f is continuous on [a, b] and differentiable on (a, b),
and f(a) = f(b), then there is a number x in (a, b) such that f ′(x) = 0.

Proof. If follows from the continuity on f on [a, b] that f has a maximum and a minimum value
on [a, b]. Suppose first that the maximum value occurs at a point x in (a, b). Then f ′(x) = 0 by
2.3, and we are done.
Suppose that the minimum value of f occurs at some point x in (a, b). Then, again, f ′(x) = 0 by
2.3.
Finally, suppose the maximum and minimum values both occur at the end points. Since f(a) = f(b),
the maximum and minimum values of f are equal, so f is a constant function, and for a constant
function we can choose any x in (a, b).

2.9. Theorem (Mean Value Theorem): if f is continuous on [a, b] and differentiable on
(a, b), then there is a number x in (a, b) such that

f ′(x) =
f(b)− f(a)

b− a
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2. Significance of the Derivative

Proof. Let

h(x) = f(x)− f(b)− f(a)

b− a
(x− a)

Clearly, h is continuous on [a, b] and differentiable on (a, b), and

h(a) = f(a). (2.1)

h(b) = f(b)− f(b)− f(a)

b− a
(x− a) (2.2)

= f(a). (2.3)

Consequently, we may apply Rolle’s Theorem to h and conclude that there is some x in (a, b) such
that

0 = h′(x) = f ′(x)− f(b)− f(a)

b− a
.

so then

f ′(x) =
f(b)− f(a)

b− a

2.10. Corollary: If f is defined on an interval and f ′(x) = 0 for all x in the interval, then f
is constant on the interval.

Proof. Let a and b be any two points in the interval with a ̸= b. Then there is some x in (a, b) such
that

f ′(x) =
f(b)− f(a)

b− a

But f ′(x) = 0 for all x in the interval, so

0 =
f(b)− f(a)

b− a
.

and so f(a) = f(b). Thus the value of f at any two points in the interval is the same, that is, f is
constant on the interval.

2.11. Corollary: If f and g are defined on the same interval, and f ′(x) = g′(x) for all x in the
interval, then there is some number c such that f = g + c.

Proof. For all x in the interval we have (f − g)′(x) = f ′(x)− g′(x) = 0, and by last corollary, there
exist a number c such that f − g = c

2.12. Definition: A function is increasing on an interal if f(a) < f(b) whenever a and b are
two numbers in the interval with a < b. The function f is decreasing on an interval if f(a) > f(b)
for all a and b in the interval with a < b.
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2. Significance of the Derivative

2.13. Corollary: If f ′(x) > 0 for all x in an interval, then f is increasing on the interval; if
f ′(x) < 0 for all x in the interval, then f is decreasing on the interval.

Proof. WLOG, consider the case where f ′(x) > 0. Let a and b be two points in the interval with
a < b. Then there is some x in (a, b) with

f ′(x) =
f(b)− f(a)

b− a

But f ′(x) > 0 for all x in (a, b), so

f(b)− f(a)

b− a
> 0

Since b − a > 0 it follows that f(b) > f(a). An analogous proof can be given when f ′(x) < 0 for
all x.

2.14. Theorem: Suppose f ′(a) = 0. If f ′′(a) > 0, then f has a local minimum at a; if f ′′(a) < 0,
then f has a local maximum at a.

Proof. By definition,

f ′′(a) = lim
h→0

f ′(a+ h)− f ′(a)

h
.

Since f ′(a) = 0, this can be written

f ′′(a) = lim
h→0

f ′(a+ h)

h

Suppose now that f ′′(a) > 0. Then f ′(a+h)
h must be positive for sufficiently small h. Therefore,

f ′(a+h) must be positive for sufficiently small h > 0 and f ′(a+h) must be negative for sufficiently
small h < 0. By 2.13, f is increasing in som einterval to the right of a and decreasing in some
interval to the left of a. Thus f has a local minimum at a. The proof for the case f ′′(a) < 0 is
similar.

2.15. Theorem: Suppose f ′′(a) exists. If f has a local minimum at a, then f ′′(a) ≥ 0; if f has
a local maximum at a, then f ′′(a) ≤ 0.

Proof. Suppose f has a local minimum at a. If f ′′(a) < 0, then f ′′(a) < 0, then f would also have
a local maximum at a, by the last theorem. Then f would be constant in some interval containing
a, so that f ′′(a) = 0, a contradiction. Thus we must have f ′′(a) ≥ 0. The case of a local maximum
is hanled similarly.

2.16. Remark: Note that 2.15 is only a partial converse of 2.14, that is, the ≥ and ≤ cannot
be replaced by > and <.
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2. Significance of the Derivative

2.17. Theorem: Suppose that f is continuous at a, and that f ′(x) exists for all x in some
interval containing a, except perhaps for x = a. Suppose, moreover, that limx→a f

′(x) exists. Then
f ′(a) also exists, and

f ′(a) = lim
x→a

f ′(x)

Proof. By definition,

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
.

For sufficiently small h > 0 the function f will be continuous on [a, a + h] and differentiable on
(a, a+ h) (a similar assertion holds for sufficiently small h < 0). by MVT there is a number αh in
(a, a+ h) such that

f(a+ h)− f(a)

h
= f ′(ah).

Now αh approaches a as h approaches 0, because αh is in (a, a + h); since limx→a f
′(x) exists, it

follows that

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
= lim

h→0
f ′(αh) = lim

x→a
f ′(x).

2.18. Remark: By the theorem above, the graph of f ′ can never exhibit a removable disconti-
nuity.

2.19. Theorem (The Cauchy MVT): If f and g are continuous on [a, b] and differentiable
on (a, b), then there is a number x in (a, b) such that

[f(b)− f(a)]g′(x) = [g(b)− g(a)]f ′(x).

If g(b) ̸= g(a), and g′(x) ̸= 0, this equation can be written as

f(b)− f(a)

g(b)− g(a)
=

f ′(x)

g′(x)
.
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2. Significance of the Derivative

2.20. Remark: Notice that if g(x) = x for all x ,then g′(x) = 1, and we obtain MVT. On the
other hands, applying MVT to f and g separately, we find that there are x and y in (a, b) with

f(b)− f(a)

g(b)− g(a)
=

f ′(x)

g′(y)
.

however there is no guarantee that the x and y found in this way will be equal.

Proof. Let

h(x) = f(x)[g(b)− g(a)]− g(x)[f(b)− f(a)].

Then h is continuous on [a, b], differentiable on (a, b), and

h(a) = f(a)g(b)− g(a)f(b) = h(b).

It follows from Rolle’s Theorems that h′(x) = 0 for some x in (a, b), which means that

0 = f ′(x)[g(b)− g(a)]− g′(x)[f(b)− f(a)].

Rearrange and we get the desired equation.

2.21. Theorem (L’Hopital’s Rule): Suppose that limx→a f(x) = 0 and limx→a g(x) = 0 and
suppose also that

lim
x→a

f ′(x)

g′(x)

exists. Then limx→a
f(x)
g(x) exists, and

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)

Proof. The hypothesis that limx→a
f ′(x)
g′(x) exists contains two implicit assumptions:

(1). there is an interval (a − δ, a + δ) such that f ′(x) and g′(x) exist for all x in (a − δ, a + δ)
except, perhaps, for x = a,

(2). in this interval g′(x) ̸= 0 with the possible exception of x = a

Let f(a) = g(a) = 0, then f and g are continuous at a. If a < x < a + δ, then MVT and Cauchy
MVT apply to f and g on the interval [a, x] (and a similar statement holds for a − δ < x < a).
First applying MVT to g, we see that g(x) ̸= 0, for if g(x) = 0 there would be some x1 in (a, x)
with g′(x1) = 0, contradicting (2). Now applying the Cauchy MVT to f and g, we see that there
is a number αx in (a, x) such that

[f(x)− 0]g′(αx) = [g(x)− 0]f ′(αx)

or since g′(αx) ̸= 0,

f(x)

g(x)
=

f ′(αx)

g′(αx)
.

Now αx approaches a as x approaches a, because αx is in (a, x); since we are assuming that

30



2. Significance of the Derivative

limy→a
f ′(y)
g′(y) exists, it follows that

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(αx)

g′(αx)
= lim

y→a

f ′(y)

g′(y)
.

Alternate δ − ϵ proof:

Since we know limx→a
f ′(x)
g′(x) exists, let L be our limit. then

∀ϵ > 0, ∃δ > 0, s.t.|a− x| < δ =⇒ |L− f ′(x)

g′(x)
| < ϵ.

But |αx − a| < |a− x| < δ, so for each ϵ we can use the same δ to see that

|x− a| < δ =⇒ |f
′(αx)

g′(αx)
− L| = |f(x)

g(x)
− L| < ϵ

As required.

2.22. Definition: A function f is convex on an interval, if for all a and b in the interval, the
line segment joining (a, f(a)) and (b, f(b)) lies above the graph of f .

2.23. Note: Sometimes, an analytic definition might be more useful. The straight line between
(a, f(a)) and (b, f(b)) is the graph of the function g defined by

g(x) =
f(b)− f(a)

b− a
(x− a) + f(a).

For this line to lie above the grpah of f is just

f(b)− f(a)

b− a
(x− a) + f(a) > f(x)

or

f(b)− f(a)

b− a
(x− a) > f(x)− f(a)

or

f(b)− f(a)

b− a
>

f(x)− f(a)

x− a
.

Therefore, we have an equivalent definition of convexity.

2.24. Definition: A function f is convex on an interval if for a, x, and b in the interval with
a < x < b we have

f(x)− f(a)

x− a
<

f(b)− f(a)

b− a
.

2.25. Definition: If the inequality in the last definition is replaced by

f(x)− f(a)

x− a
<

f(b)− f(a)

b− a
.
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Then we obtain the definition of a concave function

2.26. Remark: All concave functions are precisely the ones of the form −f , where f is convex.
So for all theorem below about convex function have immediate corollaries about concave functions
as well.

2.27. Theorem: Let f be convex. If f is differentiable at a, then the graph of f lies above the
tangent line through (a, f(a)), except at (a, f(a)) it self. If a < b and f is differentiable at a and b,
then f ′(a) < f ′(b).

Proof. Let 0 < h1 < h2, then using 2.24 on a < a+ h1 < a+ h2, we get

f(a+ h1)− f(a)

h1
<

f(a+ h2)− f(a)

h2

This inequality shows that the values of f(a+h)−f(a)
h decreasing as h → 0+. Consequently,

f ′(a) <
f(a+ h)− f(a)

h
for h > 0

Which means that for h > 0, the secant line through (a, f(a)) and (a + h, f(a + h)) has a larger
slope than the tangent line, which implies that (a + h, f(a + h)) lies above the tangent line. An
analogous argument can be used for negative h. Let h2 < h1 < 0, then

f(a+ h1)− f(a)

h1
>

f(a+ h2)− f(a)

h2

Which shows that the slope of the tangent line through (a, f(a)) is greater than

f(a+ h)− f(a)

h
for h < 0

Therefore, f(a + h) lies above the tangent line for h < 0 as well, proving the first part of the
theorem.
Now suppose that a < b, then, from the last part,

f ′(a) <
f(a+ (b− a))− f(a)

b− a
=

f(b)− f(a)

b− a
since h = b− a > 0

and

f ′(b) >
f(b+ (a− b))− f(b)

a− b
=

f(b)− f(a)

b− a
since h = a− b > 0.

Combing the inequalities gives us f ′(a) < f ′(b).

2.28. Note: This theorem has two converse, to make our proofs easier, we will first prove a
lemma which says if f ′ is increasing, then the graph of f lies below any secant line which happens
to be horizontal.

32



2. Significance of the Derivative

2.29. Lemma: Suppose f is differentiable and f ′ is increasing. If a < b and f(a) = f(b), then
f(x) < f(a) = f(b) for a < x < b.

Proof. Suppose that f(x) ≥ f(a) = f(b) for some x in (a, b). Then the maximum of f on [a, b]
occurs at some point x0 in (a, b) with f(x0) ≥ f(a) and f ′(x0) = 0. On the other hand, applying
the Mean Value Theorem to the interval [a, x0], we find that there is x1 with a < x1 < x0 and

f ′(x1) =
f(x0)− f(a)

x0 − a
≥ 0.

Contradicting the fact that f ′ is increasing.

2.30. Theorem: If f is differentiable and f ′ is increasing, then f is convex.

Proof. Let a < b. Define g by

g(x) = f(x)− f(b)− f(a)

b− a
(x− a).

It is obvious that g′ is also increasing, moreover, g(a) = g(b) = f(a), applying our lemma to g we
conclude that

g(x) < f(a) if a < x < b

In other words, if a < x < b, then

f(x)− f(b)− f(a)

b− a
(x− a) < f(a)

or

f(x)− f(a)

x− a
<

f(b)− f(a)

b− a
.

Hence f is convex.

2.31. Theorem: If f is differentiable and the graph of f lies above each tangent line except at
the point of contact, then f is convex.

Proof. Let a < b. The tangent line at (a, f(a)) is the graph of the function

g(x) = f ′(a)(x− a) + f(a).

and since (b, f(b)) lies above the tangent line, we have

f(b) > f ′(a)(b− a) + f(a).

Similarly, since the tangent line at (b, f(b)) is the graph of

h(x) = f ′(b)(x− b) + f(b),

and (a, f(a)) lies above the tangent line at (b, f(b)), we have

f(a) > f ′(b)(a− b) + f(b).

It then follows from the two inequality that f ′(a) < f ′(b), and by last theorem, f is convex.
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2.32. Theorem: If f is differentiable on an interval and intersects each of its tangent lines just
once, then f is either convex or concave on that interval.

Proof. This proof is split in two parts:
(1) First we claim that no straight line can intersect the graph of f in three different points. Suppose
not, and that some straight line did intersect the graph of f at (a, f(a)), (b, f(b)), and (c, f(c)),
with a < b < c. Then we would have

f(b)− f(a)

b− a
=

f(c)− f(a)

c− a
. (2.4)

Consider the function

g(x) =
f(x)− f(a)

x− a
for x in [b, c].

Equation (2.4) says that g(b) = g(c), so by Rolle’s Theorem, there exist a number x in (b, c) where
0 = g′(x), and thus

0 = (x− a)f ′(x)− [f(x)− f(a)]

or

f ′(x) =
f(x)− f(a)

x− a
.

But this says that the tangent line at (x, f(x)) passes through (a, f(a)), contradicting the hypothe-
ses.
(2) Suppose that a0 < b0 < c0 and a1 < b1 < c1 are points in the interval. Let

xt = (1− t)a0 + ta1 (2.5)

yt = (1− t)b0 + tb1 0 ≤ t ≤ 1. (2.6)

zt = (1− t)c0 + tc1 (2.7)

Then x0 = a0 and x1 = a1 and the points xt all lie between a0 and a1, with analogous statements
for yt and zt. Moreover, xt < yt < zt for 0 ≤ t ≤ 1.
Now consider the function

g(t) =
f(yt)− f(x1)

yt − xt
− f(zt)− f(xt)

zt − xt
for 0 ≤ t ≤ 1.

By step 1, g(t) ̸= 0 for all t in [0, 1]. So either g(t) > 0 for all t in [0, 1] or g(t) < 0 for all t in [0, 1].
Thus, either f is convex or concave.
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Chapter 3

Inverse Functions

2.33. Definition: A function f is one-one if f(a) ̸= f(b) whenever a ̸= b

2.34. Definition: For any function f , the inverse of f , denoted by f−1, is the set of all pairs
(a, b) for which the pairs (b, a) is in f .

2.35. Theorem: f−1 is a function if and only if f is one-one

Proof. Suppose first that f is one-one. Let (a, b) and (a, c) be two pairs in f−1. Then (b, a) and
(c, a) are in f , so a = f(b) and a = f(c). Since f is one-one this implies that b = c. Thus f−1 is a
function.
Conversely, suppose that f−1 is a function. If f(b) = f(c), then f contains the pairs (b, f(b)) and
(c, f(c)) = (c, f(b)), so (f(b), b) and (f(b), c) are in f−1. Since f−1 is a function this implies that
b = c. Thus f is one-one

2.36. Remark: Some important things to remember about inverse functions:

• (f−1 ◦ f)(a) = a

• (f ◦ f−1)(a) = a

• f and f−1 are reflected through the line f(x) = x

• if f is increasing then f−1 is also increasing

• if f is decreasing then f−1 is also decreasing

• if f is one-to-one, then codom(f) = dom(f−1) and codom(f−1) = dom(f)

2.37. Theorem: If f is continuous and one-one on an interval, then f is either increasing or
decreasing on that interval.

Proof. (1) If a < b < c are three points in the interval, then either (i) f(a) < f(b) < f(c) or
(ii) f(a) > f(b) > f(c). If not, for example, that f(a) < f(c). If we had f(b) < f(a), then by
IVT applied to the interval [b, c] would give an x with b < x < c and f(x) = f(a). contradicting
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the fact that f is one-one on [a, c]. Similarly, f(b) > f(c) would leader to a contradiction, so
f(a) < f(b) < f(c).
(2) If a < b < c < d are four points in the interval, then f(a) < f(b) < f(c) < f(d) or f(a) >
f(b) > f(c) > f(d) if we just apply (1) to a < b < c and b < c < d.
(3) Now take any a < b in the interval, and suppose that f(a) < f(b). Then f is increasing, for if
c and d are any two points, we can apply (2) to the collection of {a, b, c, d}.

2.38. Remark: Suppose f is continuous and one-one on I = [a, b], then dom(f) = [a, b] and
codom(f) = [f(a), f(b)] if f is increasing, and codom(f) = [f(b), f(a)] is f is decreasing.
If the domain of f is an open interval, thus having one of the the forms (a, b), (−∞, b), (a,∞), or
R, then the codomain of f (domain of f−1) will also have one of these forms

2.39. Theorem: If f is continuous and one-one on an interval, then f−1 is also continuous.

Proof. We know by the last theorem that f is either increasing or decreasing. So WLOG, lets
assume that f is increasing, since we can just take care of the other case by just considering
−f . Lets also assume that our interval is open, since any continuous one-one function on any
interval can be extended to one on a larger open interval. To show continuity, we must show that
limx→b f

−1(x) = f−1(b) for each b in the domain of f−1. Such a number b is of the form f(a) for
some a in the domain of f , and f−1(b) = a . For all ϵ > 0, we want to find a δ > 0 such that, for
all x,

if f(a)− δ < x < f(a) + δ, then a− ϵ < f−1(x) < a+ ϵ.

Since a− ϵ < a < a+ ϵ, it follows that

f(a− ϵ) < f(a) < f(a+ ϵ)

since a − ϵ < a < a + ϵ, it follows that f(a − ϵ) < f(a) < f(a + ϵ); we let δ be the smaller of
f(a+ ϵ)− f(a) and f(a)− f(a− ϵ). Our choice of δ ensures that

f(a− ϵ) ≤ f(a)− δ and f(a) + δ ≤ f(a+ ϵ).

consequently, if

f(a)− δ < x < f(a) + δ.

then

f(a− ϵ) < x < f(a+ ϵ).

Since f is increasing, f−1 is also increasing, and we obtain

f−1(f(a− ϵ)) < f−1(x) < f−1(f(a+ ϵ))

which is

a− ϵ < f−1(x) < a+ ϵ.

which is precisely what we want.
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2.40. Theorem: If f is a continuous one-one function defined on an interval and f ′(f−1) = 0,
then f−1 is not differentiable at a.

Proof. We have

f(f−1(x)) = x.

If f−1 were differentiable at a, the Chain Rule would imply that

f ′(f−1(a)) · (f−1)′(a) = 1,

hence

0 · (f−1)′(a) = 1

which is impossible.

2.41. Theorem: Let f be a continuous one-one function defined on an interval, and suppose
that f is differentiable at f−1(b), with derivative f ′(f−1(b)) ̸= 0. Then f−1 is differentiable at b,
and

(f−1)′(b) =
1

f ′(f−1(b))
.

Proof. Let b = f(a). Then

lim
h→0

f−1(b+ h)− f−1(b)

h
= lim

h→0

f−1(b+ h)− a

h

Every number b+ h in the domain of f−1 can be written in the form

b+ h = f(a+ k)

for a unique k, then

lim
h→0

f−1(b+ h)− a

h
= lim

h→0

f−1(f(a+ k))− a

f(a+ k)− b
= lim

h→0

k

f(a+ k)− f(a)
(1).

Now since b+h = f(a+k), then f−1(b+h) = a+k or k = f−1(b+h)−f−1(b) By the last theorem,
the function f−1 is continuous at b. since k is a function of h, this means that k approaches 0 as h
approaches 0. Since

lim
k→0

f(a+ k)− f(a)

k
= f ′(a) = f ′(f−1(b)) ̸= 0,

this implies that

(f−1)′(b) =
1

f ′(f−1(b)).

By plugging in the inverse to (1)
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Epsilon-delta approach. We can also instead use ϵ−δ, knowing that f is differentiable at f−1(b) = a,
then

∀ϵ > 0,∃δ1, s.t., 0 < |k| < δ1 =⇒ |f(a+ k)− f(a)

k
− f ′(a)| < ϵ

and since f−1 is also continuous at b by the last theorem, we have

∀δ1 > 0,∃δ2 > 0, s.t.0 < |h| < δ =⇒ |f−1(b+ h)− f−1(b)| < δ1

Take k = f−1(b+ h)− f−1(b) and connect the two ϵ− δ,

0 < |h| < δ2 =⇒ 0 < |k| < δ1 => |f(a+ k)− f(a)

k
− f ′(a)| < ϵ

That is, as h approaches 0, the derivative at a is f ′(a) = f ′(f−1(b)).
This means, let g = f−1, then g′(x) = 1

f ′(g(x))
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Chapter 4

Integrals

2.42. Definition: Let a < b, a partition of the interval [a, b] is a finite collection of points in
[a, b], one of which is a, and one of which is b.

2.43. Definition: Suppose f is bounded on [a, b] and P = {t0, ..., tn} is a partition of [a, b]. Let

mi = inf{f(x) : ti−1 ≤ x ≤ ti}.

Mi = sup{f(x) : ti−1 ≤ x ≤ ti}.

The lower sum of f for P , denoted by L(f, P ), is defined as

L(f, P ) =
n∑

i=1

mi(ti − ti−1).

The upper sum of f for P , denoted by U(f, P ), is defined as

U(f, P ) =
n∑

i=1

Mi(ti − ti−1).

2.44. Remark: The following lemma is a very important lemma which says, that more points
in a partition P result in a better approximation of the region R(f, a, b).

2.45. Lemma: If Q contains P , then

L(f, P ) ≤ L(f,Q),

U(f, P ) ≥ U(f,Q).

Proof. Consider first the special case in which Q contains just one more point than P :

P = {t0, ..., tn}
Q = {t0, ..., tk−1, u, tk, ..., tn}.
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where a = t0 < t1 < · · · < tk−1 < u < tk < · · · < tn = b. Let

m′ = inf{f(x) : tk−1 ≤ x ≤ u}, (4.1)

m′′ = inf{f(x) : u ≤ x ≤ tk}. (4.2)

Then

L(f, P ) =
n∑

i=1

mi(ti − ti−1),

L(f,Q) =
k−1∑
i=1

mi(ti − ti−1) +m′(n− tk−1) +m′′(tk − u) +
n∑

i=k+1

mi(ti − ti−1)

To prove that L(f, P ) ≤ L(f,Q) it therefore suffices to show that

mk(tk − tk−1) ≤ m′(n− tk−1) +m′′(tk − u)

Now the set {f(x) : tk−1 ≤ x ≤ tk} contains all the numbers in {f(x); tk−1 ≤ x ≤ u}, and possibly
some smaller ones, so the infimum of the first set is less than or equal to the infimum of the second,
thus

mk ≤ m′.

Similarly,

mk ≤ m′′.

Therefore,

mk(tk − tk−1) = mk(u− tk−1) +mk(tk − u) ≤ m′(u− tk−1) +m′′(tk − u).

This proves, in the special case, that L(f, P ) ≤ L(f,Q). An analogous proof can be given to show
that U(f, P ) ≥ U(f,Q). The general case can now be easily deduced. The partition Q can be
obtained from P by adding one point at a time, that is, there is a sequence of partitions

P = P1, P2, ..., Pα = Q

such that Pk+1 contains juts one more point than Pj . Then

L(f, P ) = L(f, P1) ≤ L(f, P2) ≤ · · · ≤ L(f, Pα) = L(f,Q).

and

U(f, P ) = U(f, P1) ≥ U(f, P2) ≥ · · · ≥ U(f, Pα) = U(f,Q).

2.46. Theorem: Let P1 and P2 be partitions of [a, b], and let f be a function which is founded
on [a, b]. Then

L(f, P1) ≤ U(f, P2).

Proof. There is a partition P which contains both P1 and P2. According to the lemma,

L(f, P1) ≤ L(f, P ) ≤ U(f, P ) ≤ U(f, P2)
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2.47. Remark: It follows from the theorem that any upper sum U(f, P ′) is an upper bound for
the set of all lower sums L(f, P ). Consequently, any upper sum U(f, P ′) is greater than or equal
to the least upper bound of all lower sums:

sup{L(f, P ) : P a partition of [a, b]} ≤ U(f, P ′),

for every P ′. This, in turn, also means that sup{L(f, P )} is a lower bound for the set of all upper
sums of f . Consequently,

sup{L(f, P )} ≤ inf{U(f, P )}.

2.48. Definition: A function f which is bounded on [a, b] is integrable on [a, b] if

sup{L(f, P ) : P a partition of [a, b]} = inf{U(f, P ) : P a partition of [a, b]}

In this case, the common number is called the integral of f on [a, b] and is denoted by∫ b

a
f.

2.49. Theorem: If f is bounded on [a, b], then f is integrable on [a, b] if and only if for every
ϵ > 0 there is a partition P of [a, b] such that

U(f, P )− L(f, P ) < ϵ

Proof. Suppose first that for every ϵ > 0 there is a partition P with

U(f, P )− L(f, P ) < ϵ.

Since

inf{U(f, P ′)} ≤ U(f, P ),

sup{L(f, P ′)} ≥ L(f, P ),

it follows that

inf{U(f, P ′)} − sup{L(f, P ′)} < ϵ.

it follows that

inf{U(f, P ′)} − sup{L(f, P ′)} < ϵ.

Since this is true for all ϵ > 0, it follows that

sup{L(f, P ′)} = inf{U(f, P ′)};

by definition, then, f is integrable. The proof of the converse assertion is similar: If f is integrable,
then

sup{L(f, P )} = inf{U(f, P )}
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This means that for each ϵ > 0 there are partitions P ′, P ′′ with

U(f, P ′′)− L(f, P ′) < ϵ

Let P be a partition which contains both P ′ and P ′′. Then, according to the lemma,

U(f, P ) ≤ U(f, P ′′),

L(f, P ) ≥ L(f, P ′);

consequently,

U(f, P )− L(f, P ) ≤ U(f, P ′′)− L(f, P ′) < ϵ

2.50. Theorem: If f is continuous on [a, b], then f is integrable on [a, b].

Proof. Since f is continuous on [a, b], it must be bounded on [a, b]. To show that f is integrable
on [a, b], we have to use the theorem 2.49 and show that for all ϵ > 0, there exist a partition P of
[a, b] such that

U(f, P )− L(f, P ) < ϵ

As proved in Chapter 8, f is continuous on [a, b] if and only if f is uniformly continuous on [a, b].
Thus there is some δ such that for all x, y ∈ [a, b]

|x− y| < δ =⇒ |f(x)− f(y)| < ϵ

2(b− a)

Now the trick is to choose a partition P = {t0, ..., tn} such that each |ti − ti−1| < δ, then for each i
we have

|f(x)− f(y)| < ϵ

2(b− a)
for allx, y ∈ [ti−1, ti]

it follows easily that

Mi −mi ≤
ϵ

2(b− a)
<

ϵ

b− a
.

Since this is true for all i, we have

U(f, P )− L(f, P ) =
n∑

i=1

(Mi −mi)(ti − ti−1) (4.3)

<
ϵ

b− a

n∑
i=1

ti − ti−1 (4.4)

=
ϵ

b− a
· b− a (4.5)

= ϵ. (4.6)

as required.
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2.51. Theorem: Let a < c < b. If f is integrable on [a, b], then f is integrable on [a, c] and
[c, b]. Conversely, if f integrable on [a, c] and on [c, b] then f is integrable on [a, b]. Finally, if f is
integrable on [a, b], then ∫ b

a
f =

∫ c

a
f +

∫ b

c
f.

Proof. Suppose f is integrable on [a, b], then for all ϵ > 0, there is a partition P = {t0, ..., tn} of
[a, b] such that

U(f, P )− L(f, P ) < ϵ

Lets assume that c = tj for some j. (Otherwise, let Q be the partition which contains t0, ..., tj and
c, then Q contains P , and U(f,Q)− L(f,Q) ≤ U(f, P )− L(f, P ) < ϵ.)
Now P ′ = {t0, ..., tj} is a partition of [a, c] and P ′′ = {tj , ..., tn} is a partition of [c, b]. Since

L(f, P ) = L(f, P ′) + L(f, P ′′).

U(f, P ) = U(f, P ′) + U(f, P ′′).

we have

[U(f, P ′)− L(f, P ′)] + [U(f, P ′′)− L(f, P ′′)] = U(f, P )− L(f, P ) < ϵ.

Since each square bracket is nonnegative, they are each less that ϵ. This shows that f is integrable
on [a, c] and [c, b], note also that

L(f, P ′) ≤
∫ c

a
f ≤ U(f, P ′)

L(f, P ′′) ≤
∫ b

c
f ≤ U(f, P ′′)

so that

L(f, P ) ≤
∫ c

a
f +

∫ b

c
f ≤ U(f, P ).

Since this is true for any P , this proves that∫ c

a
f +

∫ b

c
f =

∫ b

a
f.

Now to prove the converse, suppose that f integrable on [a, c] and on [c, b]. If ϵ > 0, there is a
partition P ′ of [a, c] and a partition P ′′ of [c, b] such that

U(f, P ′)− L(f, P ′) <
ϵ

2
.

U(f, P ′′)− L(f, P ′′) <
ϵ

2
.

If P is the partition of [a, b] containing all the points of P ′ and P ′′, then

L(f, P ) = L(f, P ′) + L(f, P ′′),

U(f, P ) = U(f, P ′) + U(f, P ′′).
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Consequently,

U(f, P )− L(f, P ) = [U(f, P ′)− L(f, P ′)] + [U(f, P ′′)− L(f, P ′′)] < ϵ.

2.52. Remark: With this, we can now add the definition∫ a

a
f = 0 and

∫ b

a
f = −

∫ a

b
f if a > b.

2.53. Theorem: If f and g are integrable on [a, b], then f + g is integrable on [a, b] and∫ b

a
(f + g) =

∫ b

a
f +

∫ b

a
g.

Proof. Let P = {t0, ..., tn} be any partition of [a, b]. Let

mi = inf{(f + g)(x) : ti−1 ≤ x ≤ ti},
m′

i = inf{f(x) : ti−1 ≤ x ≤ ti},
m′′

i = inf{g(x) : ti−1 ≤ x ≤ ti},

and define Mi,M
′
i ,M

′′
i similarly. Then

mi ≥ m′
i +m′′

i and Mi ≤ M ′
i +M ′′

i

Therefore,

L(f, P ) + L(g, P ) ≤ L(f + g, P ).

and

U(f + g, P ) ≤ U(f, P ) + U(g, P ).

Thus,

L(f, P ) + L(g, P ) ≤ L(f + g, P ) ≤ U(f + g, P ) ≤ U(f, P ) + U(g, P ).

Since f and g are integrable, there are partitions P ′, P ′′ with

U(f, P ′)− L(f, P ′) <
ϵ

2
.

U(g, P ′′)− L(g, P ′′) <
ϵ

2

If P contains both P ′ and P ′′, then

U(f, P ) + U(g, P )− [L(f, P ) + L(g, P )] < ϵ,

and consequently

U(f + g, P )− L(f + g, P ) < ϵ.

This proves that f + g is integrable on [a, b]. Moreover,
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(1).

L(f, P ) + L(g, P ) ≤ L(f + g, P )

≤
∫ b

a
(f + g)

≤ U(f + g, P ) ≤ U(f, P ) + U(g, P );

(2).

L(f, P ) + L(g, P ) ≤
∫ b

a
f +

∫ b

a
g ≤ U(f, P ) + U(g, P ).

Since U(f, P )−L(f, P ) and U(g, P )−L(g, P ) can both be made as small as desired, it follows that

U(f, P ) + U(g, P )− [L(f, P ) + L(g, P )]

can also be made as small as desired; it therefore follows from (1) and (2) that∫ b

a
(f + g) =

∫ b

a
f +

∫ b

a
g.

2.54. Theorem: If f is integrable on [a, b], then for any number c, the function cf is integrable
on [a, b] and ∫ b

a
cf = c ·

∫ b

a
f.

Proof. Since f is integrable on [a, b], then for all ϵ > 0, there is a partition P = {t0, ..., tn} such
that U(f, P )− L(f, P ) < ϵ. Let

cmi = inf{cf(x) : ti−1 ≤ x ≤ ti}

cMi = sup{cf(x) : ti−1 ≤ x ≤ ti}

then

L(cf, P ) =

n∑
i=1

cmi(ti − ti−1) = c

n∑
i=1

mi(ti − ti−1) = cL(f, P )

U(cf, P ) =
n∑

i=1

cMi(ti − ti−1) = c
n∑

i=1

Mi(ti − ti−1) = cU(f, P )

if c ≥ 0, then c(U(f, P )− L(f, P )) < ϵ which implies

c((U(f, P )− L(f, P )) < cϵ

U(cf, P )− L(cf, P ) < cϵ

Since we can make ϵ as small as possible, we can also make cϵ as small as possible, and thus cf is
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integrable on [a, b]. Notice also that

L(cf, P ) = cL(f, P ) ≤ c

∫ b

a
f ≤ cU(f, P ) = U(cf, P ) =⇒

∫ b

a
cf = c

∫ b

a
f

If c ≤ 0, we can use the fact that

cmi = inf{cf(x) : ti−1 ≤ x ≤ ti} = c sup{f(x) : ti−1 ≤ x ≤ ti}

cMi = sup{cf(x) : ti−1 ≤ x ≤ ti} = c inf{f(x) : ti−1 ≤ x ≤ ti}

Which implies that

L(cf, P ) = cU(f, P ) and U(cf, P ) = cL(f, P ).

Therefore,

U(cf, P )− L(cf, P ) = cL(f, P )− cU(f, P ) = −c(U(f, P )− L(f, P )) < −cϵ

as required. Likewise

L(cf, P ) = cU(f, P ) ≤ c

∫ b

a
f ≤ cL(f, P ) = U(cf, P ) =⇒

∫ b

a
cf = c

∫ b

a
f

2.55. Theorem: Suppose f is integrable on [a, b] and that

m ≤ f(x) ≤ M∀x ∈ [a, b].

Then

m(b− a) ≤
∫ b

a
f ≤ M(b− a).

Proof. It is clear that

m(b− a) ≤ L(f, P ) and U(f, P ) ≤ M(b− a)

for every partition P . Since
∫ b
a f = sup{L(f, P )} = inf{U(f, P )}, the desired inequality follows

immediately.

46



Chapter 5

Trigonometric Functions

2.56. Definition:

π = 2 ·
∫ 1

−1

√
1− x2 dx.

We define π as the area of the unit circle, more precisely, it is twice the area of a semicircle.

2.57. Fact: The area bounded by the unit circle, the horizontal axis, and a half-line from the
origin to (x,

√
1− x

2
) is given by

A(x) =
x
√
1− x2

2
+

∫ 1

x

√
1− t2 dt,

for all −1 ≤ x ≤ 1.

2.58. For 0 ≤ x ≤ π, we want to define cosx and sinx as the coordinates of a point P =
(cosx, sinx) on the unit circle which determines a sector with area π

2 .

2.59. Definition: If 0 ≤ x ≤ π, then cosx is the unique number in [−1, 1] such that

A(cosx) =
x

2

and

sinx =
√

1− (cosx)2.

2.60. Theorem: If 0 < x < π, then

cos′(x) = sinx,

sin′(x) = cosx.

Proof. IF B = 2A, then the definition A(cosx) = x
2 can be written as

B(cosx) = x;
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which means B is just the inverse of cos. Taking the derivative of A we see

A′(x) = − 1

2
√
1− x2

,

and so

B′(x) = − 1√
1− x2

.

Consequently

cos′(x) = (B−1)′(x)

=
1

B′(B−1(x))

=
1

− 1√
1−[B−1(x)]2

= −
√
1− (cosx)2

= − sinx.

Since

sinx =
√

1− (cosx)2.

we also obtain

sin′(x) =
1

2
· = −2 cosx · cos′(x)√

1− (cosx)2

=
cosx sinx

sinx
= cosx.

2.61. For values of sinx and cosx for x not in [0, π], they can be easily defined by a two-step
piecing together process:

• If π ≤ x ≤ 2π, then

sinx = − sin(2π − x),

cosx = cos(2π − x).

• If x = 2πk + x′ for some integer k, and some x′ ∈ [0, 2π], then

sinx = sinx′,

cosx = cosx′.
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2.62. Definition: For x ̸= kπ + π
2 , we define:

secx =
1

cosx
and tanx =

sinx

cosx
,

and for x ̸= kπ, we define:

cscx =
1

sinx
and cotx =

cosx

sinx
.

2.63. Theorem: If x ̸= kπ + π
2 , then

sec′(x) = secx tanx,

tan′(x) = sec2 x.

If x ̸= kπ, then

csc′(x) = − cscx cotx,

cot′(x) = − csc2 x.

Proof. Trivial.

2.64. The inverses of the trigonometric functions can also be easily differentiated, however,
we must restrict them to suitable intervals so that it is one-to-one; the largest possible length
obtainable is π, and the intervals usually chosen are

[−π/2, π/2] for sin, [0, π] for cos, (−π/2, π/2) for tan.

2.65. Definition: The inverse of the function

f(x) = sinx,−π/2 ≤ x ≤ π/2

is denoted by arcsin, whose domain is [−1, 1].

2.66. Definition: The inverse of the function

g(x) = cosx, 0 ≤ x ≤ π

is denoted by arccos, whose domain is [−1, 1].

2.67. Definition: The inverse of the function

h(x) = tanx, π/2 < x < π/2

is denoted by arctan, whose domain is all of R. This function is one of the simplest examples of
a bounded differentiable function that is one-to-one on all of R.
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2.68. Theorem: If −1 < x < 1, then

arcsin′(x) =
1√

1− x2
and arccos′(x) =

−1√
1− x2

.

Moreover, for all x we have

arctan′(x) =
1

1 + x2
.

Proof.

arcsin′(x) = (f−1)′(x)

=
1

f ′(f−1(x))

=
1

sin′(arcsinx))

=
1

cos(arcsinx)

Now since

sin2(arcsinx) + cos2(arcsinx) = 1,

we have

x2 + cos2(arcsinx) = 1;

therefore,

cos(arcsinx) =
√

1− x2.

This proves the first formula. The second formula can be proofed in a similar way. The third
formula is proved as follows.

arctan′(x) = (h−1)′(x)

=
1

h′h−1(x)

=
1

tan′(arctanx)

=
1

sec( arctanx)

Dividing both sides of the identity

sin2a+ cos2a = 1

by cos2 a yields

tan2 a+ 1 = sec2 a.

It follows that

tan2(arctanx) + 1 = sec2(arctanx)
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or

x2 + 1 = sec2(arctanx)

which proves the last formula.

2.69. Lemma: Suppose f has a second derivative everywhere and that

f ′′ + f = 0, f(0) = 0, f ′(0) = 0,

then f = 0.

Proof. Multiplying both sides of the first equation by f ′ yields

f ′f ′′ + ff ′ = 0.

Thus

[(f ′)2 + f2]′ = 2(f ′f ′′ + ff ′) = 0.

so (f ′)2 + f2 is a constant function. From f(0) = 0 and f ′(0) = 0 it follows that the constant is 0;
thus

[f ′(x)]2 + [f(x)]2 = 0 for all x

which implies that

f(x) = 0 for all x.

2.70. Theorem: If f has a second derivative everywhere and

f ′′ + f = 0, f(0) = a, f ′(0) = b,

then

f = b · sin+a · cos .

Proof. Let

g(x) = f(x)− b sinx− a cosx.

Then

g′(x) = f ′(x)− b cosx+ a sinx,

g′′(x) = f ′′(x) + b sinx+ a cosx.

Consequently,

g′′ + g = 0, g(0) = 0, g′(0) = 0,

which shows that

0 = g(x) = f(x)− b sinx− a cosx for all x.
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2.71. Theorem: If x and y are any two numbers, then

sin(x+ y) = sinx cos y + cosx sin y,

cos(x+ y) = cosx cos y − sinx sin y.

Proof. For any number y we can define a function f by

f(x) = sin(x+ y).

Then

f ′(x) = cos(x+ y)

f ′′(x) = − sin(x+ y).

Consequently,

f ′′ + f = 0, f(0) = sin y, f ′(0) = cos y,

It follows from theorem 4 that

sin(x+ y) = cos y sinx+ sin y cosx, for all x.

Since any number y could have been chosen to begin with, this proves the first formula for all x
and y. The second formula is proved similarly.
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Chapter 6

Log and Exp functions

2.72. Definition: If x > 0, then

log x =

∫ x

1

1

t
dt.

2.73. Note: if x > 1, then log x > 0, if 0 < x < 1, then log x < 0. And for all x ≤ 0, log x is
not defined as f(t) = 1/t is not bounded on [x, 1].

2.74. Theorem: If x, y > 0, then

log(xy) = log x+ log y.

Proof. Choose any y > 0 and let

f(x) = log(xy)

Then

f ′(x) = log′(xy)· = 1

xy
· y =

1

x

Thus f ′ = log′, this means that there is a number c such that

f(x) = log x+ c

for all x > 0, that is

log(xy) = log x+ c

for all x > 0. Letting x = 1, we obtain

log(1 · y) = log 1 + c = log c.

This is true for all y > 0, so the theorem is proved.
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2.75. Corollary: If n is a natural number and x > 0, then

log(xn) = n log x.

Proof. Trivial.

2.76. Corollary: If x, y > 0, then

log(
x

y
) = log x− log y.

Proof. This follows from the equations

log x = log(
x

y
· y) = log(

x

y
) + log y.

2.77. Definition: The ”exponential function,” exp, is defined as log−1.

2.78. Theorem: For all numbers x,

exp′(x) = exp(x).

Proof.

exp′(x) = (log−1)′(x) =
1

log′(log−1(x))
=

1
1

log−1(x)

= log−1(x) = exp(x).

2.79. Theorem: If x and y are any two numbers, then

exp(x+ y) = exp(x) · exp(y).

Proof. Let x′ = exp(x) and y′ = exp(y), so that

x = log x′ and y = log y′

Then

x+ y = log x′ + log y′ = log(x′y′).

This means that

exp(x+ y) = x′y′ = exp(x) · exp(y).
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2.80. Definition:

e = exp(1).

2.81. Definition: For any number x,

ex = exp(x).

2.82. Definition: If a > 0, then, for any real number x,

ax = ex log a.

2.83. Theorem: If a > 0, then

(ab)c = abc

for all b, c;

a1 = a and ax+y = ax · ay.

for all x, y.

Proof. Trivial.

2.84. Remark: Just as ax can be expressed in terms of exp, loga can be expressed in terms of
log. If y = loga x, then x = ay = ey log a, so log x = y log a, or y = log x

log a .

2.85. Theorem: If f is differentiable and

f ′(x) = f(x) for all x,

then there is a number c such that

f(x) = cex

for all x.

Proof. Let

g(x) =
f(x)

ex
.

Then

g′(x) =
exf ′(x)− f(x)ex

(ex)2
= 0.

Hence, g(x) is constant and so

g(x) =
f(x)

ex
= c

for all x.
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2.86. Theorem: For any natural number n,

lim
x→∞

ex

xn
= ∞.

Proof. We prove by induction. When n = 1, we have to prove ex > x for all x, this is equivalent to
x > log(x) for all x.

• If x < 0, then 0 < ex ≤ 1, so x < ex.

• If 0 < x ≤ 1, then log(x) ≤ 0 < x.

• If x > 1, then log x =
∫ x
1

1
t dt. Suppose we have a partition P consisting with 1 block with

width x− 1 and M = 1, this means log x < U(1t ,P) = 1(x− 1) < x.

By induction on n, using L’Hopitals’ Rule

lim
x→∞

ex

xn
= lim

x→∞

ex

nxn−1
=

1

n
lim
x→∞

ex

xn−1
= ∞.
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Chapter 7

Integration in elementary terms

Section 3. List of important basic integrals

(1).
∫
a dx = ax

(2).
∫
an dx = xn+1n+1

, n ̸== 1

(3).
∫

1
x dx = log x

(4).
∫
ex dx = ex

(5).
∫
sinx dx = − cosx

(6).
∫
cosx dx = sinx

(7).
∫
sec2 x dx = tanx

(8).
∫
secx tanx dx = secx

(9).
∫

dx
1+x2 = arctanx

(10).
∫

dx√
1−x2

= arcsinx

3.1. Theorem (Integration by parts): If f ′ and g′ are continuous, then∫
f(x)g′(x) dx = f(x)g(x)−

∫
f ′(x)g(x) dx.

∫ b

a
f(x)g′(x) dx = f(x)g(x)|ba −

∫ b

a
f ′(x)g(x) dx.

Proof. Trivial.

3.2. Note: While using integration by parts, there are two tricks one should know. The first
is to consider the function g′ to be the fact 1, the obvious example of the use of this is when
integrating

∫
log x dx. THe second trick is to ues integration by parts to find

∫
h in terms of

∫
h

again, and then solve for
∫
h. A simple example:∫

(1/x) · log x dx = log x · log x−
∫
(1/x) · log x dx
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3. List of important basic integrals

which implies that

2

∫
1

x
log x dx = (log x)2

or ∫
1

x
log x dx =

(log x)2

2

However more complicated calculations is often required, usually by repeated applying integration
by parts.

3.3. Theorem (Substitution): If f and g′ are continuous, then∫ g(b)

g(a)
f(u) du =

∫ b

a
(f(g(x)) · g′(x) dx

Proof. If F is a primitive of f , then the left side is F (g(b))− F (g(a)). On the other hand,

(F ◦ g)′ = (F ′ ◦ g) · g′ = (f ◦ g) ◦ g′.

So F ◦ g is a primitive of (f ◦ g) · g′ and the right side is

(F ◦ g)(b)− (F ◦ g)(a) = F (g(b))− F (g(a)).

3.4. Theorem (Partial fraction decomposition): Every polynomial function

q(x) = xm + bm−1x
m−1 + · · ·+ b0

can be written as a product

q(x) = (x− α1)
r1 · ... · (x− αk)

rk(x2 + β1x+ γ1)
s1 · ... · (x2 + βlx+ γl)

2k

(where r1 + · · ·+ rk + 2(s1 + · · ·+ sl) = m).
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3. List of important basic integrals

3.5. Theorem: If n < m and

p(x) = xn + an−1x
n−1 + · · ·+ a0,

a(x) = xm + bm−1x
m−1 + · · ·+ b0

= (x− α1)
r1 · ... · (x− αk)

rk(x2 + β1x+ γ1)
s1 · ... · (x2 + βlx+ γl)

2k

then p(x)/q(x) can be written in the form

p(x)

q(x)
= [

a1,1
(x− α1)

+ · · ·+ a1,r1
(x− α1)r1

] + · · ·+ [
ak,1

(x− αk)
+ · · ·+

ak,r1
(x− αk)rk

]

+ [
b1,1x+c1,1

(x2 − β1x+ γ1)
+ · · ·+ b1,s1 + c1,s1

(x2 + β1x+ γ1)s1
] + · · ·+ [

bl,1x+cl,1

(x2 − βlx+ γl)
+ · · ·+

bl,sl + cl,sl
(x2 + βlx+ γl)sl

]
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Chapter 8

Integration in elementary terms

Section 4. Taylor polynomials

4.1. Definition: Let

ak =
f (k)(a)

k!
, 0 ≤ k ≤ n

The Taylor polynomial of degree n for f at a is:

Pn,a(x) = a0 + a1(x− a) + · · ·+ an(x− a)n.

4.2. The Taylor polynomial has been defined so that

P (k)
n,a(a) = f (k)(a) 0 ≤ k ≤ n,

and it is also the only polynomial of degree ≤ n with this property.

4.3. Theorem: Suppose that f is a function which is n-times differentiable. Let

ak =
f (k)(a)

k!
. 0 ≤ k ≤ n,

and define

Pn,a(x) = a0 + a1(x− a) + · · ·+ an(x− a)n.

Then

lim
x→a

f(x)− Pn,a(x)

(x− a)n
= 0.

Proof. Writing out Pn,a(x) explicitly, we obtain

f(x)− Pn,a(x)

(x− a)n
=

f(x)−
∑n−1

i=0
f (i)(a)

i! (x− a)i

(x− a)n
− f (n)(a)

n!
.
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4. Taylor polynomials

Lets introduce two new functions

Q(x) =
n−1∑
i=0

f (i)(a)

i!
(x− a)i and g(x) = (x− a)n;

so now we must prove that

lim
x→a

f(x)−Q(x)

g(x)
=

f (n)(a)

n!
.

Notice that Q(k)(a) is just f (k)(a) for all k ≤ n− 1, and g(k)(x) = n!(x− a)n−k/(n− k)!. Thus we
can apply l’Hopitals rule repeatedly, as

lim
x→a

[f(x)−Q(x)] = f(a)−Q(a) = 0,

...

lim
x→a

[f (n−2)(x)−Q(n−2)(x)] = f (n−2)(a)−Q(n−2)(a) = 0,

We can in fact apply l’Hopital’s rules n− 1 times to obtain

lim
x→a

f(x)−Q(x)

(x− a)n
= lim

x→a

f (n−1)(x)−Q(n−1)(x)

n!(x− a)

Since Q is a polynomial of degree n − 1, its (n − 1)st derivative is a constant, in fact, Q
(n−1)(x) =

f (n−1)(a). Thus

lim
x→a

f(x)−Q(x)

(x− a)n
= lim

x→a

f (n−1)(x)− f (n−1)(a)

n!(x− a)

Applying L’Hopital one last time gives us that the last limit is f (n)(a)/n!, which is what we
want.

4.4. Theorem: Suppose that

f ′(a) = · = f (n−1)(a) = 0,

f (n)(a) ̸= 0

(1). if n is even and f (n)(a) > 0, then f has a local minimum at a.

(2). If n is even and f (n)(a) < 0, then f has a local maximum at a.

(3). If n is odd, then f has neither a local maximum nor a local minimum at Thena.

Proof. Without loss of generality, assume f(a) = 0, since neither the hypothese nor the conclusion
are affected if f is replaced by f − f(a). Then, since the first n− 1 derivatives of f at a are 0, the
Taylor polynomial Pn,a of f is

Pn,a(x) = f(a) + f ′(a)(x− a) + · · ·+ f (n)

n!
(x− a)n =

f (n)(a)

n!
(x− a)n.
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4. Taylor polynomials

By theorem 1,

0 = lim
x→a

f(x)− Pn,a(x)

(x− a)n
= lim

x→a
[

f(x)

(x− a)n
− f (n)(a)

n!
].

Which means, if x is sufficiently close to a, then

f(x)

(x− a)n
has the same sign as

f (n)(a)

n!
.

Suppose now that n is even. In this case (x−a)n > 0 for all x ̸= a, hence f(x) must have the same
sign as fn(a)/n! for x sufficiently cloes to a. If f (n)(a) > 0, then

f(x) > 0 = f(a)

for x close to a, and hence f has a local minimum at a. An analogous proof works for the case
f (n)(a) < 0.
Now suppose that n is odd, the same argument as before shows that if x is sufficiently close to a,
then

f(x)

(x− a)n
must always has the same sign

But (x− a)n > 0 for x > a and (x− a)n < 0 for x < a. Therefore f(x) has different signs for x > a
and x < a, which proves that f is neither a local maximum nor a local minimum at a.

4.5. Definition: Two functions f and g are equal up to order n at a if

lim
x→a

f(x)− g(x)

(x− a)n
= 0.

4.6. Theorem: Let P and Q be two polynomials in (x− a), of degree ≤ n, and suppose that P
and Q are equal up to order n at a. Then P = Q.

Proof. Spivak pg 419.

4.7. Corollary: Let f be n-times differentiable at a, and suppose that P is a polynomial in
(x− a) of degree ≤ n, which equals f up to order n at a. Then P = Pn,a,f .
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